@article{UZKU_2006_148_1_a13,
author = {A. V. Gorokhov and I. E. Sinaiskii},
title = {Exact solution of the {Jaynes{\textendash}Cummings} model for atom moving through the non-ideal cavity},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {116--123},
year = {2006},
volume = {148},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_1_a13/}
}
TY - JOUR AU - A. V. Gorokhov AU - I. E. Sinaiskii TI - Exact solution of the Jaynes–Cummings model for atom moving through the non-ideal cavity JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2006 SP - 116 EP - 123 VL - 148 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2006_148_1_a13/ LA - ru ID - UZKU_2006_148_1_a13 ER -
%0 Journal Article %A A. V. Gorokhov %A I. E. Sinaiskii %T Exact solution of the Jaynes–Cummings model for atom moving through the non-ideal cavity %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2006 %P 116-123 %V 148 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2006_148_1_a13/ %G ru %F UZKU_2006_148_1_a13
A. V. Gorokhov; I. E. Sinaiskii. Exact solution of the Jaynes–Cummings model for atom moving through the non-ideal cavity. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 1, pp. 116-123. http://geodesic.mathdoc.fr/item/UZKU_2006_148_1_a13/
[1] Jaynes E. T., Cummings F. W., “Comparison of quantum and semiclassical radiation theories with application to the Beam Maser”, Proc. IEEE, 51:1 (1963), 89–109 | DOI
[2] Tavis M., Cummings F. W., “Exact solution for an N-molecule-radiaton-field hamiltonian”, Phys. Rev., 170 (1968), 379–384 | DOI
[3] Yoo H. Y., Eberly J. H., “Dynamical theory of an atom with two and three levels interacting with quantized cavity fields”, Physics Reports, 118 (1985), 239–337 | DOI
[4] Singh S., “Field statistics in some generalized Jaynes – Cummings models”, Phys. Rev. A, 25 (1982), 3206–3216 | DOI | MR
[5] Eberly J. H., Narozhny N. B., Sanches-Mondragon J. J., “Periodic spontaneous collapse and revival in a simple quantum model”, Phys. Rev. Lett., 44 (1980), 1323–1326 | DOI | MR
[6] Scully M. O., Zubairy M. S., Quantum Optics, Cambridge University Press, Cambridge, 1997, 630 pp.
[7] Raithel G., Wagner C., Walther H., Narducci L. M., Scully M. O., “The micromaser: a providing ground for quantum physics, in Advances in atomic, molecular and optical physics”, ed. P. Berman, Academic, N. Y., 1994, 57–121
[8] Walther H., “Single atom experiments in cavities and traps”, Proc. R. Soc. A, 454 (1998), 431–445 | DOI | MR | Zbl
[9] Shore B. W., Knight P. L., “Topical review. The Jaynes – Cummings model”, J. Mod. Opt., 40 (1993), 1195–1238 | DOI | MR | Zbl
[10] Gorokhov A. V., Sinaiski I. E., “Exact solution of the Jaynes – Cummings model with relaxation”, Proc. SPIE, 5476, 2003, 91–98
[11] Gorokhov A. V., Sinaiskii I. E., “Metod uravneniya Fokkera – Planka i statistika fotonov v teorii odnoatomnogo mazera”, Izv. RAN. Ser. Fizicheskaya, 68:9 (2004), 1288–1291
[12] Joshi A., Lawande S. V., “Effect of atom motion on Rydberg atoms undergoing the two-photon transitions in a lossless cavity”, Phys. Rev. A, 42 (1990), 1752–1756 | DOI
[13] Gorokhov A. V., Metody teorii grupp v zadachakh kvantovoi fiziki, Kuibyshevsk. gos. un-t, Kuibyshev, 1979, 96 pp.