Mixed finite element method for quasilinear degenerate elliptic equations.
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 147 (2005) no. 3, pp. 127-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Dirichlet problem for the quasilinear elliptic equations of the second order that admits nonlinear degeneration is considered. A mixed scheme of the finite element method is proposed. The convergence of the discrete mixed problem solution to the generalized solution is investigated. In particular, the strong convergence of discrete flux is established. The iterative methods of the numerical solution of the mixed finite element method schemes are proposed and investigated. There is an example of the application of the proposed numerical methods to the nonlinear seepage theory problem.
@article{UZKU_2005_147_3_a7,
     author = {M. M. Karchevskii and A. E. Fedotov},
     title = {Mixed finite element method for quasilinear degenerate elliptic equations.},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {127--140},
     year = {2005},
     volume = {147},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a7/}
}
TY  - JOUR
AU  - M. M. Karchevskii
AU  - A. E. Fedotov
TI  - Mixed finite element method for quasilinear degenerate elliptic equations.
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2005
SP  - 127
EP  - 140
VL  - 147
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a7/
LA  - ru
ID  - UZKU_2005_147_3_a7
ER  - 
%0 Journal Article
%A M. M. Karchevskii
%A A. E. Fedotov
%T Mixed finite element method for quasilinear degenerate elliptic equations.
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2005
%P 127-140
%V 147
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a7/
%G ru
%F UZKU_2005_147_3_a7
M. M. Karchevskii; A. E. Fedotov. Mixed finite element method for quasilinear degenerate elliptic equations.. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 147 (2005) no. 3, pp. 127-140. http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a7/

[1] Farhloul M., “A mixed finite element method for a nonlinear Dirichlet problem”, IMA. J. Num. Analysis, 18 (1998), 121–132 | DOI | MR | Zbl

[2] Farhloul M., Manouzi H., “On a mixed finite elenent nethod for the p-Laplasian”, Can. Appl. Math. Quathrly, 8:1 (2000), 67–78 | DOI | MR | Zbl

[3] Karchevskii M. M., Fedotov A. E., “Ob odnom variante smeshannogo metoda konechnykh elementov dlya kvazilineinykh ellipticheskikh uravnenii”, Issledovaniya po prikladnoi matematike i informatike, Kazan. gos. un-t, Kazan, 2003, 74–80

[4] Karchevsky M. M., Fedotov A. E., “Error estimates and iterative procedure for mixed finite element solution of second-order quasi-linear elliptic problems”, Comput. Methods in Appl. Math., 4:4 (2004), 445–463 | MR | Zbl

[5] Karchevskii M. M., Lapin A. V., “Issledovanie raznostnoi skhemy dlya nelineinoi statsionarnoi zadachi teorii filtratsii”, Issledovaniya po prikladnoi matematike, 6, Izd-vo Kazan. un-ta, Kazan, 1979, 23–31 | MR

[6] Zadvornov O. A., “Issledovanie nelineinoi statsionarnoi zadachi filtratsii pri nalichii tochechnogo istochnika”, Izv. vuzov. Matematika, 2005, no. 1, 58–63 | MR | Zbl

[7] Karchevskii M. M., “Ob odnom podkhode k postroeniyu smeshannykh skhem MKE dlya kvazilineinykh ellipticheskikh uravnenii”, Materialy Pyatogo Vseross. seminara “Setochnye metody dlya kraevykh zadach i ikh prilozheniya” (Kazan 17–21 sent. 2004 g.), Kazan. gos. un-t, Kazan, 2004, 108–111

[8] Dubinskii Yu. A., “Kvazilineinye ellipticheskie i parabolicheskie uravneniya lyubogo poryadka”, Uspekhi mat. nauk, 23:1 (1968), 45–90 | MR

[9] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR

[10] Temam R., Uravneniya Nave–Stoksa, Mir, M., 1981, 408 pp. | MR | Zbl

[11] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR

[12] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer series in Comp. Math., 1991, 350 pp. | MR | Zbl

[13] Maslovskaya L. V., “Obobschennyi algoritm Kholesskogo dlya smeshannykh diskretnykh analogov ellipticheskikh kraevykh zadach”, Zh. vychisl. matem. i matem. fiz., 29:1 (1989), 67–74 | MR

[14] Maslovskaya L. V., “Ob usloviyakh primenimosti obobschennogo algoritma Kholesskogo”, Zh. vychisl. matem. i matem. fiz., 32:3 (1992), 339–347 | MR | Zbl

[15] Ikramov Kh. D., “Neskolko zamechanii po povodu obobschennogo algoritma Kholesskogo”, Zh. vychisl. matem. i matem. fiz., 32:7 (1992), 1126–1130 | MR | Zbl

[16] Dyakonov E. G., Minimizatsiya vychislitelnoi raboty. Asimptoticheski optimalnye algoritmy dlya ellipticheskikh zadach, Nauka, M., 1989, 272 pp. | MR

[17] Chizhonkov E. V., “Metody relaksatsii dlya resheniya uravnenii s sedlovymi operatorami”, Iteratsionnye metody resheniya lineinykh i nelineinykh setochnykh zadach, Materialy Vseross. shk.-konf., v. 2, Tr. Matem. tsentra im. N. I. Lobachevskogo, 1999, 44–93

[18] Karchevskii M. M., Lyashko A. D., Raznostnye skhemy dlya nelineinykh uravnenii matematicheskoi fiziki, Izd-vo Kazan. un-ta, Kazan, 1976, 158 pp.

[19] Karchevskii M. M., Lyashko A. D., “O reshenii nekotorykh nelineinykh zadach teorii filtratsii”, Izv. vuzov. Matematika, 1975, no. 6, 73–81

[20] Glushenkov V. D., “Ob odnom uravnenii nelineinoi teorii filtratsii”, Prikladnaya matematika v tekhniko-ekonomicheskikh zadachakh, Izd-vo Kazan. un-ta, Kazan, 1976, 12–21

[21] Bernadiner G. I., Entov V. M., Ryzhik V. M., Gidrodinamicheskaya teoriya anomalnykh zhidkostei, Nauka, M., 1975, 199 pp.