@article{UZKU_2005_147_3_a7,
author = {M. M. Karchevskii and A. E. Fedotov},
title = {Mixed finite element method for quasilinear degenerate elliptic equations.},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {127--140},
year = {2005},
volume = {147},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a7/}
}
TY - JOUR AU - M. M. Karchevskii AU - A. E. Fedotov TI - Mixed finite element method for quasilinear degenerate elliptic equations. JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2005 SP - 127 EP - 140 VL - 147 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a7/ LA - ru ID - UZKU_2005_147_3_a7 ER -
%0 Journal Article %A M. M. Karchevskii %A A. E. Fedotov %T Mixed finite element method for quasilinear degenerate elliptic equations. %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2005 %P 127-140 %V 147 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a7/ %G ru %F UZKU_2005_147_3_a7
M. M. Karchevskii; A. E. Fedotov. Mixed finite element method for quasilinear degenerate elliptic equations.. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 147 (2005) no. 3, pp. 127-140. http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a7/
[1] Farhloul M., “A mixed finite element method for a nonlinear Dirichlet problem”, IMA. J. Num. Analysis, 18 (1998), 121–132 | DOI | MR | Zbl
[2] Farhloul M., Manouzi H., “On a mixed finite elenent nethod for the p-Laplasian”, Can. Appl. Math. Quathrly, 8:1 (2000), 67–78 | DOI | MR | Zbl
[3] Karchevskii M. M., Fedotov A. E., “Ob odnom variante smeshannogo metoda konechnykh elementov dlya kvazilineinykh ellipticheskikh uravnenii”, Issledovaniya po prikladnoi matematike i informatike, Kazan. gos. un-t, Kazan, 2003, 74–80
[4] Karchevsky M. M., Fedotov A. E., “Error estimates and iterative procedure for mixed finite element solution of second-order quasi-linear elliptic problems”, Comput. Methods in Appl. Math., 4:4 (2004), 445–463 | MR | Zbl
[5] Karchevskii M. M., Lapin A. V., “Issledovanie raznostnoi skhemy dlya nelineinoi statsionarnoi zadachi teorii filtratsii”, Issledovaniya po prikladnoi matematike, 6, Izd-vo Kazan. un-ta, Kazan, 1979, 23–31 | MR
[6] Zadvornov O. A., “Issledovanie nelineinoi statsionarnoi zadachi filtratsii pri nalichii tochechnogo istochnika”, Izv. vuzov. Matematika, 2005, no. 1, 58–63 | MR | Zbl
[7] Karchevskii M. M., “Ob odnom podkhode k postroeniyu smeshannykh skhem MKE dlya kvazilineinykh ellipticheskikh uravnenii”, Materialy Pyatogo Vseross. seminara “Setochnye metody dlya kraevykh zadach i ikh prilozheniya” (Kazan 17–21 sent. 2004 g.), Kazan. gos. un-t, Kazan, 2004, 108–111
[8] Dubinskii Yu. A., “Kvazilineinye ellipticheskie i parabolicheskie uravneniya lyubogo poryadka”, Uspekhi mat. nauk, 23:1 (1968), 45–90 | MR
[9] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR
[10] Temam R., Uravneniya Nave–Stoksa, Mir, M., 1981, 408 pp. | MR | Zbl
[11] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR
[12] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer series in Comp. Math., 1991, 350 pp. | MR | Zbl
[13] Maslovskaya L. V., “Obobschennyi algoritm Kholesskogo dlya smeshannykh diskretnykh analogov ellipticheskikh kraevykh zadach”, Zh. vychisl. matem. i matem. fiz., 29:1 (1989), 67–74 | MR
[14] Maslovskaya L. V., “Ob usloviyakh primenimosti obobschennogo algoritma Kholesskogo”, Zh. vychisl. matem. i matem. fiz., 32:3 (1992), 339–347 | MR | Zbl
[15] Ikramov Kh. D., “Neskolko zamechanii po povodu obobschennogo algoritma Kholesskogo”, Zh. vychisl. matem. i matem. fiz., 32:7 (1992), 1126–1130 | MR | Zbl
[16] Dyakonov E. G., Minimizatsiya vychislitelnoi raboty. Asimptoticheski optimalnye algoritmy dlya ellipticheskikh zadach, Nauka, M., 1989, 272 pp. | MR
[17] Chizhonkov E. V., “Metody relaksatsii dlya resheniya uravnenii s sedlovymi operatorami”, Iteratsionnye metody resheniya lineinykh i nelineinykh setochnykh zadach, Materialy Vseross. shk.-konf., v. 2, Tr. Matem. tsentra im. N. I. Lobachevskogo, 1999, 44–93
[18] Karchevskii M. M., Lyashko A. D., Raznostnye skhemy dlya nelineinykh uravnenii matematicheskoi fiziki, Izd-vo Kazan. un-ta, Kazan, 1976, 158 pp.
[19] Karchevskii M. M., Lyashko A. D., “O reshenii nekotorykh nelineinykh zadach teorii filtratsii”, Izv. vuzov. Matematika, 1975, no. 6, 73–81
[20] Glushenkov V. D., “Ob odnom uravnenii nelineinoi teorii filtratsii”, Prikladnaya matematika v tekhniko-ekonomicheskikh zadachakh, Izd-vo Kazan. un-ta, Kazan, 1976, 12–21
[21] Bernadiner G. I., Entov V. M., Ryzhik V. M., Gidrodinamicheskaya teoriya anomalnykh zhidkostei, Nauka, M., 1975, 199 pp.