Solution of the obstacle problem by domain decomposition method
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 147 (2005) no. 3, pp. 112-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Domain decomposition method with non-overlapping subdomains is applied for solving the obstacle problem. An obstacle being located in a known subdomain of the initial domain, partitioning of the domain is made by using this information, so, the information about possible lost of the solution regularity. Finite element method with quadrature rules and non-matching grids in the subdomains is used to approximate corresponding variational inequality; finer grid is constructed in the subdomain containing the obstacle. Two iterative methods are constructed to solve finite dimensional problems, they can be viewed as non-linear variants of Douglas–Rachford splitting iterative method. Convergence of the iterative algorithms is proved, their implementation is discussed, and numerical results are applied.
@article{UZKU_2005_147_3_a6,
     author = {A. V. Lapin and M. A. Ignat'eva},
     title = {Solution of the obstacle problem by domain decomposition method},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {112--126},
     year = {2005},
     volume = {147},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a6/}
}
TY  - JOUR
AU  - A. V. Lapin
AU  - M. A. Ignat'eva
TI  - Solution of the obstacle problem by domain decomposition method
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2005
SP  - 112
EP  - 126
VL  - 147
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a6/
LA  - ru
ID  - UZKU_2005_147_3_a6
ER  - 
%0 Journal Article
%A A. V. Lapin
%A M. A. Ignat'eva
%T Solution of the obstacle problem by domain decomposition method
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2005
%P 112-126
%V 147
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a6/
%G ru
%F UZKU_2005_147_3_a6
A. V. Lapin; M. A. Ignat'eva. Solution of the obstacle problem by domain decomposition method. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 147 (2005) no. 3, pp. 112-126. http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a6/

[1] Lebedev V. I., Metod kompozitsii, OVM AN SSSR, M., 1986, 192 pp. | MR

[2] Lebedev V. I., Agoshkov V. I., Operatory Puankare–Steklova i ikh prilozheniya v analize, OVM AN SSSR, M., 1983, 184 pp. | MR

[3] Agoshkov V. I., “Metody razdeleniya oblasti v zadachakh matematicheskoi fiziki”, Vychislitelnye protsessy i sistemy, 8, Nauka, M., 1991, 4–51

[4] Quarteroni A., “Domain decomposition and parallel processing for the numerical solution of partial differential equations”, Survey on Mathematics for Industry, 1 (1991), 75–118 | MR | Zbl

[5] Quarteroni A., Periaux J., Kuznetsov Yu., Widlund O. B., Domain decomposition methods in science and engineering, AMS, Providence, 1994 | MR | Zbl

[6] Smith B., Bjørstad P., Gropp W., Domain decomposition. Parallel multilevel method for elliptic partial differential equations, Cambridge University Press, 1996 | MR

[7] Le Tallec P., “Domain decomposition methods in computational mechanics”, Comput. Mechanics Adv., 1 (1994), 121–220 | MR | Zbl

[8] Herrera I., Keyes D., Widlund O., Yates R.(eds.), Domain Decomposition Methods in Science and Engineering, National Autonomous University of Mexico (UNAM), Mexico City, Mexico, 2003, 466 pp. | MR | Zbl

[9] Kornhuber R., Hoppe R., Periaux J., Pironneau O., Widlund O., Xu J.(eds.), Domain decomposition methods in science and engineering, Lecture Notes in Computational Science and Engineering, 40, Springer, 2004, 700 pp.

[10] Laitinen E., Lapin A. V., Pieskä J., “Splitting iterative methods and parallel solution of variational inequalities”, Lobachevskii J. of Mathematics, 8 (2001), 167–184 | MR | Zbl

[11] Dostal Z., Friedlander A., Gomes F. A. M., Santos S. A., “Preconditioning by projectors in the solution of contact problems: A parallel implementation”, Ann. Oper. Res., 117 (2002), 117–129 | DOI | MR | Zbl

[12] Dostal Z., Horak D., “Scalability and FETI based algorithm for large discretized variational inequalities”, Math. Comput. Simul., 61 (2003), 347–357 | DOI | MR | Zbl

[13] Danek J., Hlaváček I., Nedoma J., “Domain decomposition for generalized unilateral semi-coercive contact problem with given friction in elasticity”, Math. Comput. Simul., 68 (2005), 271–300 | DOI | MR | Zbl

[14] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR

[15] Barbu V., Nonlinear semigroups and differential equations in Banach spaces, Nordhoff Intern. Publ., 1976 | MR

[16] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 399 pp. | MR

[17] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984, 320 pp. | MR | Zbl

[18] Lions P. L., Mercier B., “Splitting algorithms for the sum of two nonlinear operators”, SIAM J. Numer. Anal., 16 (1979), 964–979 | DOI | MR | Zbl