Application of effective medium theory for obtaining hydraulic functions on pore networks.
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 147 (2005) no. 3, pp. 57-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Effective medium theory on pore networks was employed for modeling hydraulic characteristics of porous media. Different flow regimes (flow in completely filled pores, corner and film flow in partially filled pores) and different mechanisms of liquid displacement (piston-type displacement, “snap-off”, cooperative wetting) was taken into account in modeling of single pore behavior at microlevel. Proposed micromodel was then upscaled to obtain macroscopic hydraulic characteristics for typical laboratory silica sands. All calculated hydraulic functions (drainage curve, hydraulic conductivity, main wetting curve, and primary wetting curve) showed good agreement with experimental data.
@article{UZKU_2005_147_3_a3,
     author = {B. E. Gogolashvili and A. G. Egorov},
     title = {Application of effective medium theory for obtaining hydraulic functions on pore networks.},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {57--74},
     year = {2005},
     volume = {147},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a3/}
}
TY  - JOUR
AU  - B. E. Gogolashvili
AU  - A. G. Egorov
TI  - Application of effective medium theory for obtaining hydraulic functions on pore networks.
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2005
SP  - 57
EP  - 74
VL  - 147
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a3/
LA  - ru
ID  - UZKU_2005_147_3_a3
ER  - 
%0 Journal Article
%A B. E. Gogolashvili
%A A. G. Egorov
%T Application of effective medium theory for obtaining hydraulic functions on pore networks.
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2005
%P 57-74
%V 147
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a3/
%G ru
%F UZKU_2005_147_3_a3
B. E. Gogolashvili; A. G. Egorov. Application of effective medium theory for obtaining hydraulic functions on pore networks.. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 147 (2005) no. 3, pp. 57-74. http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a3/

[1] Dautov R. Z., Egorov A. G., Nieber J. L., Sheshukov A. Y., “Simulation of two-dimensional gravity-driven unstable flow”, Proc. 14th Int. Conf. on Comp. Meth. in Wat. Res., v. 1, Delft, The Netherlands, 2002, 9–16

[2] Egorov A. G., Dautov R. Z., Nieber J. L., Sheshukov A. Y., “Stability analysis of traveling wave solution for gravity-driven flow”, Proc. 14th Int. Conf. on Comp. Meth. in Wat. Res., Delft, The Netherlands, 2002, 120–127, 1 pp.

[3] Egorov A. G., Dautov R. Z., “Modelirovanie protsessov paltseobrazovaniya pri vlagoperenose v nenasyschennykh poristykh sredakh”, Modeli mekhaniki sploshnoi sredy. Obzornye doklady i lektsii XVI sessii Mezhdunarodnoi shkoly po modelyam mekhaniki sploshnoi sredy (Kazan, 27 iyunya – 3 iyulya 2002 g.), Tr. Matem. tsentra im. N. I. Lobachevskogo, 15, Izd-vo Kazan. matem. o-va, Kazan, 2002, 28–60 | MR

[4] Nieber J. L., Dautov R., Egorov A., Shehsukov A., “Dynamic capillary pressure mechanism for gravity-driven flows; review and extension to dry conditions”, Transport Porous Media, 58 (2005), 147–172 | DOI | MR

[5] Cuesta C., van Duijn C. J., Hulshof J., “Infiltration in porous media with dynamic capillary pressure: travelling waves”, Europ. J. Appl. Math., 11 (2000), 381–397 | DOI | MR | Zbl

[6] Gogolashvili B. E., “Opredelenie ravnovesnykh gidravlicheskikh funktsii na osnove mikromodelirovaniya poristoi sredy”, Modeli mekhaniki sploshnoi sredy, Materialy XVII sessii Mezhd. shkoly po modelyam mekhaniki sploshnoi sredy (Kazan, 4–10 iyulya 2004 g.), Tr. Matem. tsentra im. N. I. Lobachevskogo, 27, Izd-vo Kazan. matem. o-va, Kazan, 2004, 88–95

[7] Bakke S., Øren P., “3-D pore scale modelling of heterogeneous sandstone reservoir rocks and quantitative analysis of the architecture, geometry and spatial continuity of the pore network”, SPE paper 35479, Soc. Pet. Eng., 1996

[8] Lenormand R., Zarcone C., Sarr A., “Mechanisms of the displacement of one fluid by another in a network of capillary ducts”, J. Fluid Mech., 135 (1983), 337–353 | DOI

[9] Lenormand R., Zarcone C., “Role of roughness and edges during imbibition in square capillaries”, SPE paper 13264, Proc. of 59th SPE Annual Technical Conference and Exhibition, Houston, TX, 1984

[10] Lenormand R., “Liquids in porous media”, J. Phys.: Condens. Matter, 2 (1990), 79–88 | DOI

[11] Patzek T. W., “Verification of a complete pore network model of drainage and imbibition”, SPE paper 59312, Soc. Pet. Eng., 2000

[12] Hughes R. G., Blunt M. J., “Pore scale modeling of rate effects in imbibition”, Transport Porous Media, 40:3 (2000), 295–322 | DOI

[13] Blunt M. J., Scher H., “Pore-level modeling of wetting”, Phys. Rev. E, 52:6 (1995), 6387–6403 | DOI

[14] Panfilov M. B., Panfilova I. V., Osrednennye modeli filtratsionnykh protsessov s neodnorodnoi vnutrennei strukturoi, Nauka, M., 1996, 383 pp. | Zbl

[15] Kirkpatrick S., “Percolation and conduction”, Rev. Mod. Phys., 45 (1973), 574–588 | DOI

[16] Yanuka M., Dullien F., Enick D., “Percolation processes and porous media”, J. Colloid Interface Sci., 112 (1986), 24–41 | DOI

[17] Brooks R. H., Corey A. T., Hydraulic properties of porous media, Hydrol. Pap. 3, Fort Collins, Colorado State Univ., 1964

[18] van Genuchten M. T., “A closed form equation for predicting the hydraulic conductivity of unsaturated soils”, Soil Sci. Soc. Am. J., 44 (1980), 892–898 | DOI

[19] Tuller M., Or D., “Unsaturated hydraulic conductivity of structured porous media: A review of liquid configuration-based models”, Vadose Zone J., 2002, 14–37

[20] Mason G., Morrow N. R., “Capillary behavior of a perfectly wetting liquid in irregular triangular tubes”, J. Colloid Interface Sci., 141 (1991), 262–274 | DOI

[21] Iwamatsu M., Horii K., “Capillary condensation and adhesion of two wetter surfaces”, J. Colloid Interface Sci., 182 (1996), 400–406 | DOI

[22] Alt W., Luckhaus S., Visintin A., “On nonstationary flow through porous media”, Ann. Math. Pura Appl. J., 136 (1984), 303–316 | DOI | MR | Zbl

[23] Schroth M. H., Ahearn S. J., Selker J. S., Istok J. D., “Characterization of Miller-similar silica sands for laboratory hydraulic studies”, Soil Sci. Soc. Am. J., 60 (1996), 1331-1339 | DOI

[24] DiCarlo R., “Experimental measurements of saturation overshoot on infiltration”, Water Resour. Res., 40(4) (2004) | DOI

[25] Ustohal P., Stauffer F., Dracos T., “Measurement and modeling of hydraulic characteristics of unsaturated porous media with mixed wettability”, J. Cont. Hydrol., 33 (1998), 5–37 | DOI

[26] Stauffer F., Kinzelbach W., “Cyclic hysteretic flow in porous medium column: model, experiment, and simulations”, J. Hydrology, 240 (2001), 264–275 | DOI

[27] Ross P. J., Williams J., Bristow K. L., “Equation for extending water-retention curves to dryness”, Soil. Sci. Soc. Am. J., 55 (1991), 923–927 | DOI

[28] Morel-Seytoux H. J., Nimmo J. R., “Soil water retention and maximum capillary drive from saturation to oven dryness”, Water Resour Res., 35(7) (1999), 2031–2041 | DOI

[29] Toledo P. G., Novy R. A., Davis H. T., Scriven L. E., “On the transport properties of porous media at low water content”, Indirect methods for estimating the hydraulic properties of unsaturated soils (U.S. Salinity Laboratory), Riverside, CA, 1992, 97–114

[30] Kacimov A. R., Yakimov N. D., “Nonmonotonic moisture profile as a solution of Richards' equation for soils with conductivity hysteresis”, Adv. Water Resour., 21:8 (1998), 691–696 | DOI

[31] Wong P-Z., “Flow in porous media: permeability and displacement patterns”, MRS Bulletin, 19:5 (1994), 32–38