@article{UZKU_2005_147_3_a10,
author = {M. R. Timerbaev},
title = {An approximation by finite elements of the eigenvalue problem for degenerate differential operator},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {157--165},
year = {2005},
volume = {147},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a10/}
}
TY - JOUR AU - M. R. Timerbaev TI - An approximation by finite elements of the eigenvalue problem for degenerate differential operator JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2005 SP - 157 EP - 165 VL - 147 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a10/ LA - ru ID - UZKU_2005_147_3_a10 ER -
%0 Journal Article %A M. R. Timerbaev %T An approximation by finite elements of the eigenvalue problem for degenerate differential operator %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2005 %P 157-165 %V 147 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a10/ %G ru %F UZKU_2005_147_3_a10
M. R. Timerbaev. An approximation by finite elements of the eigenvalue problem for degenerate differential operator. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 147 (2005) no. 3, pp. 157-165. http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a10/
[1] Chatelin F., Spectral Approximations of Linear Operators, Academic Press, N. Y., 1983 | MR | Zbl
[2] Babuska I., Osborn J. E., “Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems”, Math. Comp., 52 (1989), 275–297 | MR | Zbl
[3] Babuska I., Osborn J. E., “Eigenvalue problems”, Handbook of Numerical Analysis, Part 1, v. II, Finite Element Methods, Elsevier, 1991, 641–792 | DOI | MR
[4] Timerbaev M. R., “Multiplikativnoe vydelenie osobennosti v skhemakh MKE dlya ellipticheskikh vyrozhdayuschikhsya uravnenii”, Diff. uravneniya, 52:7 (2000), 1086–1093 | MR
[5] Khardi G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948, 456 pp.
[6] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980, 664 pp. | MR
[7] Timerbaev M. R., “Vesovye otsenki resheniya zadachi Dirikhle s anizotropnym vyrozhdeniem na chasti granitsy”, Izv. vuzov. Matematika, 2003, no. 1, 60–73 | MR | Zbl
[8] Timerbaev M. R., “Otsenki pogreshnosti n-mernoi splain-interpolyatsii v vesovykh normakh”, Izv. vuzov. Matematika, 1992, no. 10, 54–60 | MR | Zbl
[9] Timerbaev M. R., “Konechnoelementnaya approksimatsiya v vesovykh prostranstvakh Soboleva”, Izv. vuzov. Matematika, 2000, no. 11, 76–84 | MR | Zbl