On steady solutions of Hele-Shaw problem
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 147 (2005) no. 3, pp. 33-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of mathematical modeling of two phase flow in a Hele-Shaw cell is observed. Our study focuses on steadily bubbles and fingers moving in a Hele-Shaw channel in the absence of surface tension. The formalization of hodograph transformation method is suggested. The formalization allows to restore the known exact solutions, to construct new solutions, and to estimate the degeneracy of solution without need of constructing full solution. In particular the degree of degeneracy of the single bubble solution is derived and the single bubble solution without fore and aft symmetry is proved to not exist.
@article{UZKU_2005_147_3_a1,
     author = {M. M. Alimov},
     title = {On steady solutions of {Hele-Shaw} problem},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {33--48},
     year = {2005},
     volume = {147},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a1/}
}
TY  - JOUR
AU  - M. M. Alimov
TI  - On steady solutions of Hele-Shaw problem
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2005
SP  - 33
EP  - 48
VL  - 147
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a1/
LA  - ru
ID  - UZKU_2005_147_3_a1
ER  - 
%0 Journal Article
%A M. M. Alimov
%T On steady solutions of Hele-Shaw problem
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2005
%P 33-48
%V 147
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a1/
%G ru
%F UZKU_2005_147_3_a1
M. M. Alimov. On steady solutions of Hele-Shaw problem. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 147 (2005) no. 3, pp. 33-48. http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a1/

[1] Hele-Shaw H. S., “The flow of water”, Nature, 58:1488 (1898), 33–36

[2] Polubarinova-Kochina P. Ya., “K voprosu o dvizhenii kontura neftenosnosti”, Dokl. AN SSSR, 47:4 (1945), 254–257

[3] Galin L. A., “Neustanovivshayasya filtratsiya so svobodnoi granitsei”, Dokl. AN SSSR, 47:4 (1945), 246–249 | MR | Zbl

[4] Muskat M., The flow of homogeneous fluids through porous media, McGraw-Hill, N. Y., 1937, 763 pp. ; Masket M., Techenie odnorodnykh zhidkostei v poristoi srede, Gostoptekhizdat, M.-L., 1949, 628 pp. | Zbl

[5] Okendon Dzh. R., Khovison S. D., “P. Ya. Kochina i Khele-Shou v sovremennoi matematike, estestvennykh naukakh i tekhnike”, PMM, 66:3 (2002), 515–524 | MR

[6] Saffman P. G., Taylor G. I., “The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid”, Proc. Roy. Soc. London. Ser. A, 245:1242 (1958), 312–329 | DOI | MR | Zbl

[7] McLean J. W., Saffman P. G., “The effect of surface tension on the shape of fingers in a Hele-Shaw cell”, J. Fluid Mech., 102 (1981), 455–469 | DOI | Zbl

[8] Howison S. D., “Complex variable methods in Hele-Shaw moving boundary problems”, Europ. J. Appl. Math., 3 (1992), 209–224 | DOI | MR | Zbl

[9] Hohlov Y. E., Howison S. D., “On the classification of solutions to the zero-surface-tension model for Hele-Shaw free boundary flows”, Q. Appl. Math., 51:4 (1993), 777–789 | MR | Zbl

[10] Ceniceros H., Hou T. Y., “The singular perturbation of surface tension in Hele-Shaw flows”, J. Fluid Mech., 409 (2000), 251–272 | DOI | MR | Zbl

[11] Wiegman P. W., Zabrodin A., “Conformal Maps and Integrable Hierarchies”, Commun. Math. Phys., 213 (2000), 523–538 | DOI | MR | Zbl

[12] Markina I., Vasil'ev A., “Explicit solutions for Hele-Shaw corner ows”, Europ. J. Appl. Math., 15 (2004), 1–9 | DOI | MR

[13] Taylor G. I., Saffman P. G., “A note on the motion of bubbles in a Hele-Shaw cell and porous medium”, Q. J. Mech. Appl. Math., 12 (1959), 265–279 | DOI | MR | Zbl

[14] Tanveer S., “New solutions for steady bubbles in a Hele-Shaw cell”, Phys. Fluids, 30:3 (1987), 651–658 | DOI | MR

[15] Brener E., Levine H., Tu Y., “Nonsymmetric Saffman-Taylor fingers”, Phys. Fluids A, 3:4 (1991), 529–534 | DOI | MR | Zbl

[16] Vasconcelos G. L., “Multiple bubbles in a Hele-Shaw cell”, Phys. Rev. E, 50:5 (1994), 3306–3309 | DOI | MR

[17] Vasconcelos G. L., “Exact solutions for N steady fingers in a Hele-Shaw cell”, Phys. Rev. E, 58:5 (1998), 6858–6860 | DOI | MR

[18] Vasconcelos G. L., “Motion of a finger with bubbles in a Hele-Shaw cell: An exact solution”, Phys. Fluids, 11:6 (1999), 1281–1283 | DOI | MR | Zbl

[19] Alimov M. M., “Osobennosti konstruirovaniya resheniya statsionarnykh i nestatsionarnykh zadach Khele-Shou”, Tr. Matem. tsentra im. N. I. Lobachevskogo, 27, Izd-vo Kazan. matem. o-va, Kazan, 2004, 19–29 | MR

[20] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973, 736 pp. | MR

[21] Lamb H., Hydrodynamics, Cambridge University Press, 1932 ; Lamb G., Gidrodinamika, GITTL, M.-L., 1947, 928 pp. | MR | Zbl

[22] Birkgof G., Sarantonello E., Strui, sledy i kaverny, Mir, M., 1964, 466 pp. | MR

[23] Gurevich M. I., Teoriya strui idealnoi zhidkosti, Nauka, M., 1979, 536 pp. | Zbl

[24] Tian F. R., Vasconcelos G. L., “Rotation invariance for steady Hele-Shaw flows”, Phys. Fluids A, 5:8 (1987), 1863–1865 | DOI | MR

[25] Faber T. E., Fluid dynamics for physicists, Cambridge Univ. Press, Cambridge, 1997 ; Faber T. E., Gidroaerodinamika, Postmarket, M., 2001, 560 pp. | MR

[26] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. VI, Gidrodinamika, Nauka, M., 1988, 736 pp. | MR