Over-determined boundary value problems for elliptic partial differential equations and their applications to waves diffraction theory.
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 147 (2005) no. 3, pp. 4-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The review of the results of investigation of the boundary value problems with redundant boundary conditions for the partial differential equations is given. The necessary and sufficient conditions of solvability for the over-determined problems are obtained by the integral Fourier transform method in the classes of distributions for the equations with constant coefficients. The Helmholtz equation, the Maxwell equations and sets of equations for the dynamic elasticity theory are considered as examples. These solvability conditions are used for reducing some problems of propagation and diffraction of electromagnetic and elastic waves theory to the integral and summatorial equations.
@article{UZKU_2005_147_3_a0,
     author = {I. E. Pleshchinskaya and N. B. Pleschinskii},
     title = {Over-determined boundary value problems for elliptic partial differential equations and their applications to waves diffraction theory.},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {4--32},
     year = {2005},
     volume = {147},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a0/}
}
TY  - JOUR
AU  - I. E. Pleshchinskaya
AU  - N. B. Pleschinskii
TI  - Over-determined boundary value problems for elliptic partial differential equations and their applications to waves diffraction theory.
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2005
SP  - 4
EP  - 32
VL  - 147
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a0/
LA  - ru
ID  - UZKU_2005_147_3_a0
ER  - 
%0 Journal Article
%A I. E. Pleshchinskaya
%A N. B. Pleschinskii
%T Over-determined boundary value problems for elliptic partial differential equations and their applications to waves diffraction theory.
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2005
%P 4-32
%V 147
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a0/
%G ru
%F UZKU_2005_147_3_a0
I. E. Pleshchinskaya; N. B. Pleschinskii. Over-determined boundary value problems for elliptic partial differential equations and their applications to waves diffraction theory.. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 147 (2005) no. 3, pp. 4-32. http://geodesic.mathdoc.fr/item/UZKU_2005_147_3_a0/

[1] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964, 832 pp. | MR

[2] Adamar Zh., Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978, 352 pp. | MR

[3] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986, 288 pp. | MR | Zbl

[4] Pleshchinskaya I. E., Pleshchinskii N. B., “The Cauchy problem and potentials for elliptic partial differential equations and some of their applications”, Advances in Equations and Inequalities, ed. J. M. Rassias, Hadronic Press, 1999, 127–146

[5] Pleschinskii N. B., “O zadachakh sopryazheniya reshenii uravnenii s chastnymi proizvodnymi. Metod chastichnykh oblastei”, Na rubezhe vekov. NIIMM im. N. G. Chebotareva Kazanskogo gosudarstvennogo universiteta. 1998–2002 gg., Izd-vo Kazan. matem. o-va, Kazan, 2003, 148–167

[6] Gelfand I. M., Shilov G. E., Nekotorye voprosy teorii differentsialnykh uravnenii. Obobschennye funktsii, vyp. 3, Fizmatgiz, M., 1958, 274 pp. | MR

[7] Khërmander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965, 380 pp. | MR

[8] Volevich L. R., Gindikin S. G., Obobschennye funktsii i uravneniya v svertkakh, Fizmatlit, M., 1994, 336 pp. | MR | Zbl

[9] Volevich L. R., Gindikin S. G., “Zadacha Koshi”, Itogi nauki i tekhniki Ser. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 32, VINITI, M., 1988, 5–98 | MR

[10] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968, 512 pp. | MR

[11] Egorov Yu. V., Lineinye differentsialnye uravneniya glavnogo tipa, Nauka, M., 1984, 360 pp. | MR

[12] Komech A. I., “Lineinye uravneniya v chastnykh proizvodnykh s postoyannymi koeffitsientami”, Itogi nauki i tekhniki Ser. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 31, VINITI, M., 1988, 127–261 | MR

[13] Makher Akhmed, Metod zadachi o skachke v zadachakh sopryazheniya reshenii uravnenii s chastnymi proizvodnymi, Diss. $\ldots$ kand. fiz.-mat. nauk, Kazan, 2001, 95 pp.

[14] Schwartz L., “Distributions à valeurs vectorielles, I”, Ann. Inst. Fourier, 7 (1957), 1–141 ; “II”, 8 (1958), 1–209 | DOI | MR | Zbl | DOI | MR | Zbl

[15] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 368 pp. | Zbl

[16] Nobl B., Metod Vinera–Khopfa, ili primenenie metoda Vinera–Khopfa dlya resheniya differentsialnykh uravnenii v chastnykh proizvodnykh, IL, M., 1962, 280 pp.

[17] Pleshchinskaya I. E., Pleshchinskii N. B., “On classification of eigen waves of planar, cylindrical and spherical dielectric waveguides”, Mathematical Methods in Electromagnetic Theory, Proc. Int. Conf. MMET'98 (Kharkov, Ukraine, June 2–5, 1998), v. 2, 781–783

[18] Pleshchinskii N. B., Tumakov D. N., “On solving diffraction problems for the junctions of open waveguides in the classes of distributions”, Mathematical Methods in Electromagnetic Theory, Proc. Int. Conf. MMET'98 (Kharkov, Ukraine, June 2–5, 1998), v. 2, 801–803

[19] Pleschinskii N. B., “Metod preobrazovaniya Fure v zadachakh sopryazheniya elektromagnitnykh polei”, Zadachi difraktsii i sopryazhenie elektromagnitnykh polei v volnovodnykh strukturakh, Tr. Matem. tsentra im. N. I. Lobachevskogo, 6, NIIMM im. N. G. Chebotareva, Kazan, 2000, 153–185

[20] Pleschinskii N. B., Tumakov D. N., Metod chastichnykh oblastei dlya skalyarnykh koordinatnykh zadach difraktsii elektromagnitnykh voln v klassakh obobschennykh funktsii, Preprint 2000-1, Izd-vo Kazan. matem. o-va, Kazan, 2000, 50 pp.

[21] Tumakov D. N., “The classes of solving of the Helmholz equation in halfplane”, Mathematical Methods in Electromagnetic Theory MMET'04, Proc. 10th Int. Conf. (Dniepropetrovsk, Ukraine, Sept. 14–17, 2004), 237-239

[22] Maher A., Pleshchinskii N. B., “Plane electromagnetic wave scattering and diffraction in a stratified medium”, Mathematical Methods in Electromagnetic Theory MMET'2000, Proc. Int. Conf. (Kharkov, Ukraine, Sept. 12–5, 2000), v. 2, 426–428

[23] Makher A., Pleschinskii N. B., “Zadacha o skachke dlya uravneniya Gelmgoltsa v ploskosloistoi srede i ee prilozheniya”, Izv. vuzov. Matematika, 2002, no. 1, 45–56 | MR | Zbl

[24] Makher Akhmed, “Zadacha o skachke dlya uravneniya Gelmgoltsa v sloistykh sredakh”, Zadachi difraktsii i sopryazhenie elektromagnitnykh polei v volnovodnykh strukturakh, Tr. Matem. tsentra im. N. I. Lobachevskogo, 6, NIIMM im. N. G. Chebotareva, Kazan, 2000, 203–211

[25] Makher Akhmed, “Difraktsiya elektromagnitnoi volny na sisteme metallicheskikh lent v ploskosloistoi srede”, Tr. Matem. tsentra im. N. I. Lobachevskogo, 13, Kazan Izd-vo “DAS”, 2001, 142–148

[26] Pleschinskii N. B., Tumakov D. N., “Granichnye zadachi dlya uravneniya Gelmgoltsa v kvadrante i v poluploskosti, sostavlennoi iz dvukh kvadrantov”, Izv. vuzov. Matematika, 2004, no. 7, 63–74

[27] Tumakov D. N., Zadachi sopryazheniya reshenii uravneniya Gelmgoltsa v koordinatnykh oblastyakh, Diss. $\ldots$ kand. fiz.-mat. nauk, Kazan, 2002, 127 pp. | MR

[28] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR

[29] Bourganov A. F., Pleshchinskii N. B., “On reflection and refraction of the electromagnetic waves on the linear and nonlinear media interface”, Mathematical Methods in Electromagnetic Theory MMET'04, Proc. 10th Int. Conf., Dniepropetrovsk, Ukraine, Sept. 14–17, 2004, 571–573

[30] Burganov A. F., “O rasseyanii elektromagnitnoi volny na granitse razdela lineinoi i nelineinoi sred”, Matematicheskoe modelirovanie i matematicheskaya fizika, Tr. Matem. tsentra im. N. I. Lobachevskogo, 29, Izd-vo Kazan. matem. o-va, Kazan, 2004, 89–94

[31] Pleshchinskii N. B., Tumakov D. N., “Regularization by the integral identities method for integral and series equations in diffraction problems”, Mathematical Methods in Electromagnetic Theory MMET'2000, Proc. Int. Conf., v. 1, Kharkov, Ukraine, Sept. 12–15, 2000, 199–201

[32] Pleshchinskii N. B., “Integral transforms method in the conjunction problems of electromagnetic fields”, Functional-Analytic and Complex Methods, their Interactions, and Applications to Partial Differential Equations, ed. W. Tutschke, Publishing House World Scientific, 2001, 161–177 | DOI | MR

[33] Pleschinskii N. B., “Matematicheskie modeli v zadachakh sopryazheniya elektromagnitnykh polei”, Aktual. probl. mat. modelir. i informatiki, Mater. nauch. konf. (g. Kazan, 30 yanv.–06 fevr. 2002 g.), Izd-vo Kazan. matem. o-va, Kazan, 2002, 71–86

[34] Tumakov D. N., “Obosnovanie metoda usecheniya BSLAU zadachi o skachke poperechnogo secheniya ploskogo volnovoda”, Zadachi difraktsii i sopryazhenie elektromagnitnykh polei v volnovodnykh strukturakh, Tr. Matem. tsentra im. N. I. Lobachevskogo, 6, NIIMM im. N. G. Chebotareva, Kazan, 2000, 234–240

[35] Raskina O. A., Tumakov D. N., “Rasseyanie elektromagnitnogo polya na N-razvetvlenii ploskogo volnovoda”, Iteratsionnye metody resheniya lineinykh i nelineinykh setochnykh zadach, Tr. Matem. tsentra im. N. I. Lobachevskogo, 2, Izd-vo “Unipress”, Kazan, 1999, 240–244

[36] Raskina O. A., Tumakov D. N., “Electromagnetic wave diffraction on an N-branching of a plane waveguide”, Mathematical Methods in Electromagnetic Theory MMET'2000, Proc. Int. Conf. (Kharkov, Ukraine, Sept. 12–15, 2000), v. 2, 400–402

[37] Tumakov D. N., “O zadache difraktsii elektromagnitoi volny na razvetvlenii ploskogo volnovoda”, Issl. po prikl. matem. i informatike, 24, Kazan. gos. un-t, Kazan, 2003, 128–137

[38] Pleschinskii N. B., “Ob integralnykh uravneniyakh pervogo roda s logarifmicheskoi osobennostyu v yadre i metodakh ikh regulyarizatsii”, Zadachi difraktsii i sopryazhenie elektromagnitnykh polei v volnovodnykh strukturakh, Tr. Matem. tsentra im. N. I. Lobachevskogo, Izd-vo Kazan. matem. o-va, Kazan, 2002, 90–120 | MR

[39] Pleschinskii N. B., Uravnenie Gelmgoltsa v poluploskosti i skalyarnye zadachi difraktsii elektromagnitnykh voln na ploskikh metallicheskikh ekranakh, Preprint PMF-03-02, Izd-vo Kazan. matem. o-va, Kazan, 2003, 30 pp.

[40] Pleschinskii I. N., “Difraktsiya elektromagnitnoi volny na naklonnoi metallicheskoi plastine v ploskom volnovode”, Problemy sovremennoi matematiki, Tr. Matem. tsentra im. N. I. Lobachevskogo, 11, Izd-vo “Unipress”, Kazan, 2001, 218–221

[41] Pleschinskii I. N., “Chislennyi metod resheniya zadachi difraktsii elektromagnitnoi volny na naklonnoi metallicheskoi plastine v ploskom volnovode”, Tr. Matem. tsentra im. N. I. Lobachevskogo, 13, Izd-vo “DAS”, Kazan, 2001, 197–204

[42] Pleschinskii I. N., Pleschinskii N. B., “O zadachakh difraktsii voln na ekranakh, raspolozhennykh na naklonnoi granitse razdela sred v volnovodakh s metallicheskimi stenkami”, Zadachi difraktsii i sopryazhenie elektromagnitnykh polei v volnovodnykh strukturakh, Tr. Matem. tsentra im. N. I. Lobachevskogo, 17, Izd-vo Kazan. matem. o-va, Kazan, 2002, 175–187 | MR

[43] Pleshchinskii I. N., Pleshchinskii N. B., “The problems of electromagnetic waves diffraction on the dielectric index step in the waveguides with metallic bounds”, Mathematical Methods in Electromagnetic Theory MMET'04, Proc. 10th Int. Conf., Dniepropetrovsk, Ukraine, Sept. 14–17, 2004, 127–129

[44] Pleschinskii I. N., “Zadacha difraktsii elektromagnitnoi volny na krivolineinoi granitse razdela sred v ploskom volnovode. Metod integralnykh tozhdestv”, Matematicheskoe modelirovanie i matematicheskaya fizika, Tr. Matem. tsentra im. N. I. Lobachevskogo, 29, Izd-vo Kazan. matem. o-va, Kazan, 2004, 95–106

[45] Saifutdinov I. G., “Zadacha difraktsii elektromagnitnoi volny na styke tsilindricheskikh volnovodov”, Matem. modelirovanie i matem. fizika, Tr. Matem. tsentra im. N. I. Lobachevskogo, 32, Izd-vo Kazansk. matem. o-va, Kazan, 2005, 11–18

[46] Tumakov D. N., “Integralnoe uravnenie zadachi difraktsii elektromagnitnoi volny na krivolineinom metallicheskom ekrane”, Chislennye metody resheniya lineinykh i nelineinykh kraevykh zadach, Tr. Matem. tsentra im. N. I. Lobachevskogo, 13, Izd-vo “DAS”, Kazan, 2001, 218–225

[47] Tumakov D. N., “Obosnovanie chislennogo metoda resheniya zadachi difraktsii elektromagnitnoi volny na krivolineinoi poverkhnosti”, Zadachi difraktsii i sopryazhenie elektromagnitnykh polei v volnovodnykh strukturakh, Tr. Matem. tsentra im. N. I. Lobachevskogo, 17, Izd-vo Kazan. matem. o-va, Kazan, 2002, 188–193 | MR

[48] Pleschinskaya I. E., “Zadacha Koshi dlya sistemy Maksvella v poluprostranstve”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Materialy Vseross. shkoly-konf., posv. 130-letiyu so dnya rozhd. D. F. Egorova (g. Kazan, 13–18 sent. 1999 g.), Izd-vo Kazan. matem. o-va, Kazan, 1999, 173–174

[49] Pleshchinskaya I. E., “On Cauchy problem for elliptic partial differential equations in a half-space”, Analiticheskie metody analiza i differentsialnykh uravnenii (AMADE'99), Tez. dokl. mezhdunar. konf. (Minsk, Belarus, 14–18 sent. 1999 g.), Belgosuniversitet, Minsk, 1999, 168–170

[50] Pleschinskii N. B., “Integralnye uravneniya zadachi difraktsii elektromagnitnoi volny na ploskom ekrane”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Materialy Vseross. shkoly-konf., posv. 130-letiyu so dnya rozhd. D. F. Egorova (g. Kazan, 13–18 sent. 1999 g.), Izd-vo Kazan. matem. o-va, Kazan, 1999, 174–176

[51] Pleshchinskii N. B., “Fourier transformation method for the conjugation problems of electromagnetic fields”, Analiticheskie metody analiza i differentsialnykh uravnenii (AMADE'99), Tez. dokl. mezhd. konf. (Minsk, Belarus, 14–18 sent. 1999 g.), Belgosuniversitet, Minsk, 1999, 170–171

[52] Pleshchinskii I. N., Pleshchinskii N. B., “Diffraction of the eigen waves on an inclined medium interface in the waveguides with metallic bounds”, Mathematical Methods in Electromagnetic Theory MMET'02, Proc. 2002 Int. Conf. (Kiev, Ukraine, Sept. 10–13, 2002), v. 2, 546–548

[53] Pleschinskii I. N., “Pereopredelennaya granichnaya zadacha dlya sistemy uravnenii Maksvella v polubeskonechnoi tsilindricheskoi oblasti i ee prilozheniya”, Matem. modelirovanie i matem. fizika, Tr. Matem. tsentra im. N. I. Lobachevskogo, 32, Izd-vo Kazan. matem. o-va, Kazan, 2005, 19–30

[54] Ilinskii A. S., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vyssh. shk., M., 1991, 224 pp.

[55] Pleschinskaya I. E., Pleschinskii N. B., Zadacha Koshi dlya sistemy uravnenii dinamicheskoi teorii uprugosti v poluprostranstve i ee prilozheniya, Preprint PMF-05-03, Izd-vo Kazan. matem. o-va, Kazan, 2005, 26 pp.

[56] Pleschinskii N. B., Otrazhenie, prelomlenie i difraktsiya dvumernykh uprugikh voln. Metod pereopredelennoi zadachi Koshi, Preprint PMF-04-01, Izd-vo Kazan. matem. o-va, Kazan, 2004, 34 pp.

[57] Aleksandrova I. L., “Pryamaya zadacha ob otrazhenii i prelomlenii uprugikh voln v sloistoi srede”, Matem. modelirovanie i matem. fizika, Tr. Matem. tsentra im. N. I. Lobachevskogo, 32, Izd-vo Kazan. matem. o-va, Kazan, 2005, 50–59

[58] Tumakov D. N., Sobstvennye kolebaniya uprugoi polosy, Preprint PMF-05-02, Izd-vo Kazan. matem. o-va, Kazan, 2005, 26 pp.

[59] Ezhova Yu. V., “Kompleksnye sobstvennye znacheniya v zadache o kolebaniyakh uprugoi polosy”, Matem. modelirovanie i matem. fizika, Tr. Matem. tsentra im. N. I. Lobachevskogo, 32, Izd-vo Kazan. matem. o-va, Kazan, 2005, 67–79

[60] Gusenkova A. A., “Metod potentsialnykh funktsii v zadachakh teorii uprugosti dlya tel s defektom”, PMM, 66:3 (2002), 470–480 | MR | Zbl

[61] Osipov E. A., “Zadacha difraktsii uprugoi volny na periodicheskoi sisteme defektov”, Matem. modelirovanie i matem. fizika, Tr. Matem. tsentra im. N. I. Lobachevskogo, 32, Izd-vo Kazan. matem. o-va, Kazan, 2005, 60–66

[62] Bitsadze A. V., Uravneniya smeshannogo tipa, Itogi nauki. Fiz.-mat. nauki, 2, Izd-vo AN SSSR, M., 1959, 164 pp.

[63] Smirnov M. M., Uravneniya smeshannogo tipa, Nauka, M., 1970, 296 pp. | MR

[64] Krikunov Yu. M., Kraevye zadachi dlya modelnykh uravnenii smeshannogo tipa, Izd-vo Kazan. un-ta, Kazan, 1986, 148 pp.

[65] Makher A., Pleschinskii N. B., Granichnye zadachi dlya uravnenii smeshannogo tipa s defektom na linii izmeneniya tipa, Preprint, Izd-vo Kazan. matem. o-va, Kazan, 2001, 30 pp.

[66] Koshlyakov N. S., Gliner E. B., Smirnov M. M., Osnovnye differentsialnye uravneniya matematicheskoi fiziki, GIFML, M., 1962, 768 pp.