The statistics of higher (fractional) moments: new method of quantitative “reading” of any arbitrary random sequence
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 147 (2005) no. 2, pp. 129-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The statistical meaning of higher $\Delta_N^{(p)}$ ($p=1,2,\ldots $) and fractional $\Delta_N^{(p)}$ ($0) moments for an arbitrary random sequence of the length $N$ has been found. The higher moments help to reduce the sequence analyzed to a finite set of $k$ statistically stable parameters, keeping invariant the values of the first $k$th moments $\Delta_k^{(p)}$ ($p=1,2,\ldots,k$). The conditions of statistical stability and proximity expressed in terms of higher moments $\Delta_N^{(p)}=\Delta_{N+k}^{(p)}$ ($p=1,2,\ldots,k$) help to find $k$ unknown stable points and predict possible future behavior of the random sequence analyzed. The generalized mean value (GMV)-function defined as $G_N^{(p)}=$ $=\left( {\Delta_N^{(p)}}\right)^{1/p}$ is turned to be very effective in analysis of statistically close random sequences or containing large numbers of measured points ($N\gg1$). The approximate analytical expression for an arbitrary $p$ value from the range ($-\infty ) entering into $G_N^{(p)} $ has been found. It gives a possibility to transform any random sequence to the determined GMV curve and express quantitatively the reduced characteristics of any random sequence in terms of a “universal” set of the fitting parameters defined by the determined GMV-function. Statistical proximity factor can be used for construction of calibration curves, when it is necessary to compare one random sequence with another one to respect of variations of some given external factor (small signal). The higher moments are easily generalized for the fractional and even complex moments. In turn, the GMV-function can be also generalized and then calculated for 2D and 3D random sequences. The approach developed in this paper is free from any model assumption and can be extremely helpful in comparison of different random sequences using for these purposes the “unified” quantitative language based on introduction of the given set of fractional moments. The relationship between the value of the fractional moment and non-extensive parameter $q$ entering into the definition of the non-extensive Tsallis entropy has been found. A possible model of statistical detection of plastic cards and other valuable documents demonstrating the effectiveness of the statistics of fractional moments has been considered. Some instructive examples in detection of superweak signals embedded into the basic random sequence ($S/N=10^{-2}$, $10^{-3}$) based on model and real data confirm the effectiveness of new approach and can serve a new basis for numerous practical applications. Analysis of dielectric spectroscopy data by means of fractional moments gives unique possibility to compare quantitatively each measurement with each other and express the influence of a neutral additive in terms of calibration curve without concrete knowledge of the corresponding fitting function.
@article{UZKU_2005_147_2_a9,
     author = {R. R. Nigmatullin},
     title = {The statistics of higher (fractional) moments: new method of quantitative {\textquotedblleft}reading{\textquotedblright} of any arbitrary random sequence},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {129--161},
     year = {2005},
     volume = {147},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_2_a9/}
}
TY  - JOUR
AU  - R. R. Nigmatullin
TI  - The statistics of higher (fractional) moments: new method of quantitative “reading” of any arbitrary random sequence
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2005
SP  - 129
EP  - 161
VL  - 147
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2005_147_2_a9/
LA  - ru
ID  - UZKU_2005_147_2_a9
ER  - 
%0 Journal Article
%A R. R. Nigmatullin
%T The statistics of higher (fractional) moments: new method of quantitative “reading” of any arbitrary random sequence
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2005
%P 129-161
%V 147
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2005_147_2_a9/
%G ru
%F UZKU_2005_147_2_a9
R. R. Nigmatullin. The statistics of higher (fractional) moments: new method of quantitative “reading” of any arbitrary random sequence. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 147 (2005) no. 2, pp. 129-161. http://geodesic.mathdoc.fr/item/UZKU_2005_147_2_a9/

[1] Feder E., Fractals, Plenum Press, N. Y.–London, 1988 | MR | Zbl

[2] Daubechies I., “Wavelets and their Applications”, Comm. Pure Appl. Math., 41 (1988), 909 | DOI | MR | Zbl

[3] Daubechies I., “The basic aspects of wavelet theory”, IEEE Trans. Inform Theory, 36 (1990), 961 | DOI | MR | Zbl

[4] Daubechies I., Ten Lectures on wavelets, CBMS Lecture Notes Series, Philadelphia, 1991 | MR

[5] Caufman R., Wavelets and their applications, John and Barlett Publishing, Boston, 1992

[6] Yulmetyev R, Hanggi P, Gafarov F., “Stochastic dynamics of time correlation in complex systems with discrete time”, Phys. Rev. E, 62 (2000), 6178 | DOI

[7] Yulmetyev R, Hanggi P, Gafarov F., “Quantification of heart rate variability by discrete non-stationary non-Markov stochastic processes”, Phys. Rev. E, 65:4 (2002), Art. 046107 | DOI

[8] Yulmetyev R. M., Gafarov F. M., Yulmetyeva D. G., Emelyanova N. A., “Intensity approximation of random fluctuation in complex systems”, Physica A, 303 (2002), 425 | DOI

[9] Timashev S. F., “A new dialogue with nature. Stochastic and chaotic dynamics in the lakes”, STOCHAOS, eds. D. S. Broomhead, E. A. Luchinskaya, P. V. E. McClintock, T. Mulin, AIP Conference Proceedings, Melville, N. Y., 2000, 238 | MR

[10] Timashev S. F., “Self-Similarity in Nature”, STOCHAOS, eds. D. S. Broomhead, E. A. Luchinskaya, P. V. E. McClintock, T. Mulin, AIP Conference Proceedings, Melville, N. Y., 2000, 562 | MR

[11] Timashev S. F., “Science of complexity: Phenomenological basis and possibility of application to problems of chemical engineering”, Theoretical Foundation of Chem. Engineering, 34 (2000), 301–312 | DOI

[12] Nigmatullin R. R., “Recognition of nonextensive statistic distribution by the eigen-coordinates method”, Physica A, 285 (2000), 547 | DOI | Zbl

[13] Nigmatullin R. R., “Detection of weak signals based on a new class of transformations of random series”, Physica A, 289 (2001), 18 | DOI | MR | Zbl

[14] Nigmatullin R. R., Toboev V. A., Smith G., Butler P., “Statistical detection of the hidden distortions in diffusive spectra”, J. Phys. D: Appl. Physics, 36 (2003), 1044 | DOI

[15] Nigmatullin R. R., Smith G., “Fluctuation-noise spectroscopy and a “universal” fitting functions of amplitudes of random sequences”, Physica A, 320 (2003), 291 | DOI | Zbl

[16] Nigmatullin R. R., Smith G., “The generalized mean value function approach: new statistical tool for the detection of weak signals in spectroscopy”, J. Phys. D: Appl. Physics, 38 (2005), 328 | DOI

[17] Mukundan R., Ramakrishnan K. R., Moment functions in image analysis. Theory and applications, World Scientific, Singapore, 1998 | MR | Zbl

[18] Giuliani A., Colafranceschi M., Webber Ch.(jr.), Zbilut G. A., “Complexity score derived from the principal component analysis of nonlinear order measures”, Physica A, 301 (2001), 567 | DOI | Zbl

[19] Abramovitz M., Stegan A., Handbook of Mathematical Functions, Dover, N. Y., 1972

[20] Mishina A. P., Proskuryakov I. V., Advanced Algebra, Fizmatgiz, M., 1962 (Russian)

[21] Belanov A. A., Solution of algebraic equations by Lobachevsky method, Nauka, M., 1989 (Russian) | MR | Zbl

[22] Nigmatullin R. R., “Eigen-coordinates:new method of identification of analytical functions in experimental measurements”, J. of Appl. Magn. Resonance, 14 (1998), 601 | DOI

[23] Abdul-Gader Jafar M. M., Nigmatullin R. R., “Identification of a new function model for the AC-impedance of thermally evaporated (undoped) selenium films using the Eigen-coordinates method”, Thin Solid Films, 396 (2001), 280

[24] Nigmatullin R. R., Abdul-Gader Jafar M. M., Shinyashiki N., Sudo S., Yagihara S., “Recognition of a new universal permittivity for glycerol by the use of the Eigen-coordinates method”, J. of Non-Crystalline Solids, 305 (2002), 96 | DOI

[25] Al-Hasan M., Nigmatullin R. R., “Identification of the generalized weibull distribution in wind speed data by the Eigen-coordinates method”, Renewable Energy, 28 (2003), 93 | DOI

[26] Kendall M. G., Stuart A., The advanced theory of statistics, v. 1, Ch. Griffin and Co. LTD, N. Y.–London–Sydney–Toronto, 1962

[27] Tsallis C., “Possible generalization of Boltzmann–Gibbs statistics”, J. Stat. Phys., 52 (1988), 479 | DOI | MR | Zbl

[28] Tsallis C., “Nonextensive thermostatistics and fractal”, Fractals, 1995, no. 3, 541 | DOI | MR | Zbl

[29] Tsallis C., “Classical and quantum complexity and nonextensive thermodynamics”, Chaos, Solitons and Fractals, 13 (2002), 371 | DOI | MR | Zbl

[30] Tsallis C., “Nonextensive statistic: theoretical, experimental and computational evidences and connections”, Braz. J. Phys., 29 (1999), 1 | DOI