Modeling in semiconductor spintronics
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 147 (2005) no. 2, pp. 97-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we review theoretical methods utilized to investigate spin dynamics in semiconductor structures. In particular, we consider drift-diffusion, kinetic transport equation and Monte–Carlo simulation approaches applied for spin transport modelling. Several examples of applications of these modelling techniques are presented.
@article{UZKU_2005_147_2_a7,
     author = {S. K. Saikin and Yu. V. Pershin and V. Privman},
     title = {Modeling in semiconductor spintronics},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {97--115},
     year = {2005},
     volume = {147},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_2_a7/}
}
TY  - JOUR
AU  - S. K. Saikin
AU  - Yu. V. Pershin
AU  - V. Privman
TI  - Modeling in semiconductor spintronics
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2005
SP  - 97
EP  - 115
VL  - 147
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2005_147_2_a7/
LA  - ru
ID  - UZKU_2005_147_2_a7
ER  - 
%0 Journal Article
%A S. K. Saikin
%A Yu. V. Pershin
%A V. Privman
%T Modeling in semiconductor spintronics
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2005
%P 97-115
%V 147
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2005_147_2_a7/
%G ru
%F UZKU_2005_147_2_a7
S. K. Saikin; Yu. V. Pershin; V. Privman. Modeling in semiconductor spintronics. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 147 (2005) no. 2, pp. 97-115. http://geodesic.mathdoc.fr/item/UZKU_2005_147_2_a7/

[1] International Technology Roadmap for Semiconductors, URL: , 2003 http://www.public.itrs.net/Files/ 2003ITRS/Home2003.htm

[2] Research needs for novel devices, SRC Edition May 2003

[3] Prinz G., “Spin-Polarized Transport”, 48, no. 4, Phys. Today, 1995, 58–63

[4] Wolf S. A., Awschalom D. D., Buhrman R. A., Daughton J. M., von Molnar S., Roukes M. L., Chtchelkanova A. Y., Treger D. M., “Spintronics: a spin-based electronics. Vision for the future”, Science, 294 (2001), 1488–1495 | DOI

[5] Das Sarma S., “Spintronics”, Am. Sci., 89 (2001), 516–523

[6] Awschalom D. D., Flatté M. E., Samarth N., “Spintronics”, Sci. Am., 286 (2002), 66–73 | DOI

[7] Akinaga H., Ohno H., “Semiconductor spintronics”, IEEE Trans. Nanotechnology, 2002, no. 1, 19–31 | DOI

[8] Jonker B. T., “Progress toward electrical injection of spin-polarized electrons into semiconductors”, Proc. of the IEEE, 91 (2003), 727–740 | DOI

[9] Žutić I., Fabian J., Das Sarma S., “Spintronics: Fundamentals and applications”, Rev. Mod. Phys., 76 (2004), 323–410 | DOI

[10] Parkin S., Jiang X., Kaiser C., Panchula A., Roche K., Samant M., “Magnetically engineered spintronic sensors and memory”, Proc. of the IEEE, 91 (2003), 661–680 | DOI

[11] Fabian J., Žutić I., Das Sarma S., “Magnetic bipolar transistor”, Appl. Phys. Lett., 84 (2004), 85–87 | DOI

[12] Flatté M. E., Yu Z. G., Johnson-Halperin E., Awschalom D. D., “Theory of semiconductor magnetic bipolar transistors”, Appl. Phys. Lett., 82 (2003), 4740–4742 | DOI

[13] Datta S., Das B., “Electronic analog of the electro-optic modulator”, Appl. Phys. Lett., 56 (1990), 665–667 | DOI

[14] Wang B., Wang J., Guo H., “Quantum spin field effect transistor”, Art. 092408, Phys. Rev. B, 67 (2003), 1–4 | Zbl

[15] Schliemann J., Egues J. C., Loss D., “Nonballistic spin-field-effect transistor”, Art. 146801, Phys. Rev. Lett., 90 (2003), 1–4 | DOI

[16] Egues J. C., Burkard G., Loss D., “Datta-Das transistor with enhanced spin control”, Appl. Phys. Lett., 82 (2003), 2658–2660 | DOI

[17] Wang X. F., Vasilopoulos P., “Influence of subband mixing due to spin-orbit interaction on the transmission through periodically modulated waveguides”, Art. 035305, Phys. Rev. B, 68 (2003), 1–8

[18] Hall K. C., Lau W. H., Gundogdu K., Flatté M. E., Boggess T.F., “Non-magnetic semiconductor spin transistor”, Appl. Phys. Lett., 83 (2003), 2937–2939 | DOI

[19] Jonker B. T., Polarized optical emission due to decay or recombination of spin-polarized injected carriers, US patent 5874749, Feb. 23, 1999

[20] Mani R. G., Johnson W. B., Narayanamurti V., Privman V., Zhang Y.-H., “Nuclear spin based memory and logic in quantum Hall semiconductor nanostructures for quantum computing applications”, Physica E, 2002, no. 12, 152–156 | DOI

[21] Vrijen R., Yablonovitch E., Wang K., Jiang H.W., Balandin A., Roychowdhury V., Mor T., DiVincenzo D., “Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures”, Art. 012306, Phys. Rev. A, 62 (2000), 1–10 | DOI

[22] Bandyopadhyay S., Cahay M., “Proposal for a spintronic femto-Tesla magnetic field sensor”, Physica E, 2005, no. 27, 98–103 | DOI

[23] Ciuti C., McGuire J. P., Sham L. J., “Spin-dependent properties of a two-dimensional electron gas with ferromagnetic gates”, Appl. Phys. Lett., 81 (2002), 4781–4783 | DOI

[24] Osipov V. V., Bratkovsky A. M., “A class of spin injection-precession ultrafast nanodevices”, Appl. Phys. Lett., 84 (2004), 2118–212025 | DOI

[25] Bratkovsky A. M., Osipov V. V., “High-frequency spin-valve effect in a ferromagnet-semiconductor-ferromagnet structure based on precession of the injected spins”, Art. 098302, Phys. Rev. Lett., 92 (2004), 1–4 | DOI

[26] D'yakonov M. “Spintronics?”, Future Trends in Microelectronics: The Nano, the Giga, and the Ultra, eds. S. Luryi, J. Xu, A. Zaslavsky, Wiley-IEEE Press, 2004

[27] Bandyopadhyay S., Cahay M., “Reexamination of some spintronic field-effect device concepts”, Appl. Phys. Lett., 85 (2004), 1433–1435 | DOI

[28] Ohno Y., Terauchi R., Adachi T., Matsukura F., Ohno H., “Spin relaxation in GaAs (110) quantum wells”, Phys. Rev. Lett., 83 (1999), 4196–4199 | DOI

[29] Karimov O. Z., John G. H., Harley R. T., Lau W. H., Flatté M. E., Henini M., Airey R., “High temperature gate control of quantum well spin memory”, Art. 246601, Phys. Rev. Lett., 91 (2003), 1–4 | DOI

[30] Malajovich I., Berry J. J., Samarth N., Awschalom D. D., “Persistent sourcing of coherent spins for multifunctional semiconductor spintronics”, Nature, 411 (2001), 770–772 | DOI

[31] Kikkawa J. M., Awschalom D. D., “Lateral drag of spin coherence in gallium arsenide”, Nature, 397 (1999), 139–141 | DOI

[32] Rudolph J., Hägele D., Gibbs H. M., Khitrova G., Oestreich M., “Laser threshold reduction in a spintronic device”, Appl. Phys. Lett., 82 (2003), 4516–4518 | DOI

[33] Lannon J. M.(jr.), Dausch D. E., Temple D., High sensitivity polarized-light discriminator device, US patent application, Apr. 24, 2003

[34] Stevens M. J., Smirl A. L., Bhat R. D. R., Najmaie A., Sipe J. E., van Driel H. M., “Quantum interference control of ballistic pure spin currents in semiconductors”, Art. 136603, Phys. Rev. Lett., 90 (2003), 1–4 | DOI

[35] Landau L. D., Lifshitz E. M., Quantum Mechanics, Butterworth-Heinemann, Oxford, 1997

[36] Condon E. U., Shortley G. H., The Theory of Atomic Spectra, Cambridge University Press, Cambridge, 1953

[37] Dresselhaus G., “Spin-orbit coupling effects in zinc blende structures”, Phys. Rev., 100 (1955), 580–586 | DOI | Zbl

[38] Bychkov Yu., Rashba E. I., “Oscillatory effects and the magnetic susceptibility of carriers in inversion layers”, J. Phys. C, 1984, no. 17, 6039–6045 | DOI

[39] Gantmakher V. F., Levinson Y. B., Carrier scattering in metals and semiconductors, Modern Problems in Condensed Matter Science, 19, eds. V. M. Agranovich, A. A. Maradudin, North-Holland, N. Y., 1987

[40] Yu Z. G., Flatté M. E., “Spin diffusion and injection in semiconductor structures: Electric field effects”, Art. 235302, Phys. Rev. B, 66 (2002), 1–14

[41] Yu Z. G., Flatté M. E., “Electric-field dependent spin diffusion and spin injection into semiconductors”, Art. 201202, Phys. Rev. B, 66 (2002), 1–4

[42] Žutić I., Fabian J., Das Sarma S., “Spin-polarized transport in inhomogeneous magnetic semiconductors: theory of magnetic/nonmagnetic $p-n$ junctions”, Art. 066603, Phys. Rev. Lett., 88 (2002), 1–4 | DOI

[43] Pershin Yu. V., Privman V., “Focusing of spin polarization in semiconductors by inhomogeneous doping”, Art. 256602, Phys. Rev. Lett., 90 (2003), 1–4 | DOI

[44] Pershin Yu. V., Privman V., “Propagation of spin-polarized electrons through interfaces separating differently doped semiconductor regions”, Proc. Conference “IEEE-NANO 2003”, IEEE Press, Monterey, CA, 2003, 168–170 | DOI

[45] Martin I., “Spin-drift transport and its applications”, Art. 014421, Phys. Rev. B, 67 (2003), 1–5

[46] Pershin Yu. V., “Accumulation of electron spin polarization at semiconductor interfaces”, Art. 233309, Phys. Rev. B, 68 (2003), 1–4 | DOI

[47] Saikin S., “Drift-diffusion model for spin-polarized transport in a non-degenerate 2DEG controlled by a spin-orbit interaction”, J. Phys.: Condens. Matter., 16 (2004), 5071–5081 | DOI

[48] Culcer D., Sinova J., Sinitsyn N. A., Jungwirth T., MacDonald A. H., Niu Q., “Semiclassical spin transport in spin-orbit-coupled bands”, Art. 046602, Phys. Rev. Lett., 93 (2004), 1–4 | DOI

[49] Pershin Yu. V., “Drift–diffusion approach to spin-polarized transport”, Physica E, 2004, no. 23, 226–231 | DOI

[50] Pershin Yu. V., “Dynamics of spin relaxation near the edge of two-dimensional electron gas”, Physica E, 2005, no. 27, 77–81 | DOI

[51] Burkov A. A., Nunez A. S., MacDonald A. H., “Theory of spin-charge-coupled transport in a two-dimensional electron gas with Rashba spin-orbit interactions”, Art. 155308, Phys. Rev. B, 70 (2004), 1–8 | DOI

[52] Shafir E., Shen M., Saikin S., “Modulation of spin dynamics in a channel of a nonballistic spin-field effect transistor”, Art. 241302(R), Phys. Rev. B, 70 (2004), 1–4 | DOI

[53] Saikin S., Shen M., Cheng M.-C., “Study of spin-polarized transport properties for spin-FET design optimization”, IEEE Trans. Nanotechnology, 2004, no. 3, 173–179 | DOI

[54] Dyakonov M. I., Kachorovskii V. Yu., “Spin relaxation of two-dimensional electrons in noncentrosymmertic semiconductors”, Sov. Phys. Semicond, 20 (1986), 110–112

[55] Bauer G. E. W., Tserkovnyak Y., Huertas-Hernando D., Brataas A., From digital to analogue magnetoelectronics: theory of transport in non-collinear magnetic nanostructures, Advances in Solid State Physics, 43, Springer-Verlag, Berlin, 2003 | DOI | Zbl

[56] Ivchenko E. L., Lyanda-Geller Yu. B., Pikus G. E., “Current of thermalized spin-oriented photocarriers”, Sov. Phys. JETP, 71 (1990), 550–557

[57] Takahashi Y., Shizume K., Masuhara N., “Spin diffusion in a two-dimensional electron gas”, Phys. Rev. B, 60 (1999), 4856–4865 | DOI

[58] Weng M. Q., Wu M. W., “Kinetic theory of spin transport in $n$-type semiconductor quantum wells”, J. Appl. Phys., 93 (2003), 410–420 | DOI

[59] Mishchenko E. G., Halperin B. I., “Transport equations for a two-dimensional electron gas with spin-orbit interaction”, Art. 045317, Phys. Rev. B, 68 (2003), 1–6 | MR

[60] Bir G. L., Pikus G. E., Symmetry and strain-induced effects in semiconductor, Keter Publishing House Jerusalem Ltd., 1974

[61] Carruthers P., Zachariasen F., “Quantum collision theory with phase-space distributions”, Rev. Mod. Phys., 55 (1983), 245–285 | DOI | MR

[62] Wigner E., “On the quantum correction for thermodynamic equilibrium”, Phys. Rev., 40 (1932), 749–759 | DOI

[63] Weng M. Q., Wu M. W., Jiang L., “Hot-electron effect in spin dephasing in $n$-type GaAs quantum wells”, Art. 245320, Phys. Rev. B, 69 (2004), 1–9

[64] Hess K., Monte Carlo device simulation: full band and beyond, Kluwer Academic Publishers, Boston, 1991 | Zbl

[65] Tomizawa K., Numerical simulation of submicron semiconductor devices, Artech House, London–Boston, 1993

[66] Fischetti M. V., Laux S. E., DAMOCLES Theoretical Manual, IBM, Yorktown Heights, 1995

[67] Bournel A., Dollfus P., Bruno P., Hesto P., “Gate-induced spin precession in an In$_{0.53}$Ga$_{0.47}$As two dimensional electron gas”, Eur. Phys. J. AP, 1998, no. 4, 1–4 | DOI

[68] Saikin S., Shen M., Cheng M.-C., Privman V., “Semiclassical Monte Carlo model for in-plane transport of spin-polarized electrons in III–V heterostructures”, J. Appl. Phys., 94 (2003), 1769–1775 | DOI

[69] Shen M., Saikin S., Cheng M.-C., “Monte Carlo modeling of spin injection through a Schottky barrier and spin transport in a semiconductor quantum well”, J. Appl. Phys., 96 (2004), 4319–4325 | DOI

[70] Bournel A., Dollfus P., Bruno P., Hesto P., “Spin-dependent transport phenomena in a HEMT”, Physica B, 272 (1999), 331–334 | DOI

[71] Kiselev A. A., Kim K. W., “Progressive suppression of spin relaxation in two-dimensional channels of finite width”, Phys. Rev. B, 61 (2000), 13115–13120 | DOI

[72] Pershin Yu. V., Privman V., “Slow spin relaxation in two-dimensional electron systems with antidots”, Art. 073310, Phys. Rev. B, 69 (2004), 1–4

[73] Pramanik S., Bandyopadhyay S., Cahay M., “Spin dephasing in quantum wires”, Art. 075313, Phys. Rev. B, 68 (2003), 1–10 | DOI

[74] Pramanik S., Bandyopadhyay S., Cahay M., “Decay of spin-polarized hot carrier current in a quasi-one-dimensional spin-valve structure”, Appl. Phys. Lett., 84 (2004), 266–268 | DOI

[75] Pramanik S., Bandyopadhyay S., Spin fluctuations and “spin noise”, 2003 http://www.cond-mat/0312099

[76] Bournel A., Dollfus P., Cassan E., Hesto P., “Monte Carlo study of spin relaxation in AlGaAs/GaAs quantum wells”, Appl. Phys. Lett., 77 (2000), 2346–2348 | DOI

[77] Barry E. A., Kiselev A. A., Kim K. W., “Electron spin relaxation under drift in GaAs”, Appl. Phys. Lett., 82 (2003), 3686–3688 | DOI

[78] Pershin Yu. V., “Long-lived spin coherence states”, Art. 155317, Phys. Rev. B, 71 (2005) | DOI

[79] Pershin Yu. V., Privman V., “Spin relaxation of conduction electrons in semiconductors due to interaction with nuclear spins”, Nano Lett., 2003, no. 3, 695–700 | DOI

[80] Shen M., Saikin S., Cheng M.-C., Privman V., “Monte Carlo modeling of spin FETs controlled by spin-orbit interaction”, Math. Comp. Simul., 65 (2004), 351–363 | DOI | MR | Zbl

[81] Shen M., Saikin S., Cheng M.-C., “Spin injection in spin FETs using a step-doping profile”, IEEE Trans. Nanotechnology, 2005, no. 4, 40–44 | DOI

[82] Pershin Yu. V., Spin coherence control by pulsed magnetic fields http://www/cond-mat/0310225

[83] D'yakonov M. I., Perel' V. I., “Spin orientation of electronics associated with the interband absorption of light in semiconductors”, Soviet Phys. JETP, 33 (1971), 1053–1059