Pulsed field gradient NMR study of the translational mobility in porous media: restricted diffusion, internal magnetic fields, flows and molecular exchange
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 147 (2005) no. 2, pp. 68-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The basic principles of the pulse field gradient NMR (PFG NMR) study of porous media are discussed in the article. It is shown that self-diffusion coefficient of the fluid molecules confined in the porous media dependence on the diffusion time includes direct information about restriction sizes within porous matrix. The question of the inducted in the porous media internal magnetic fields is discussed from the point of view of the required using of the high pulse field gradients in order to avoid experimental data distortion. It is shown that information about porous media structure and fluid localization could be obtained by the study of the diffusion decay in the internal field gradients (without applying pulse field gradient). The experiment where one can study dependence of the stimulated echo amplitude on the time interval between first and second RF pulses ($\tau$-scanning) with different diffusion times is offered to get information about internal magnetic field gradient (IMFG) distribution. The offered approach of data analysis allows to evaluate IMFG values and width of their distribution. Particularly, is shown the in the partially saturated porous media the information about internal magnetic field gradients allows to conclude about fluid localization in the porous matrix. One of the topical questions of the fluid filtration through the porous media problem is the question of the “stagnant” zone quantitative characterization. The possibilities of the PFG NMR technique are demonstrated in the paper: registration of the fluid molecules share in the “stagnant” zones, determination of the characteristics of the molecular exchange between “stagnant” zone molecules and molecules involved in the flow, etc. PFG NMR possibilities to study exchange process between different fluid phases in the porous media are discussed. Particularly, it shown that the apparent population of the molecules in the different “phases” dependence on the diffusion time allows one to obtain information not only about average molecular life-time in the phase, but also information about distribution function of the life times.
@article{UZKU_2005_147_2_a5,
     author = {V. D. Skirda and A. R. Mutina and R. V. Arkhipov},
     title = {Pulsed field gradient {NMR} study of the translational mobility in porous media: restricted diffusion, internal magnetic fields, flows and molecular exchange},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {68--79},
     year = {2005},
     volume = {147},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_2_a5/}
}
TY  - JOUR
AU  - V. D. Skirda
AU  - A. R. Mutina
AU  - R. V. Arkhipov
TI  - Pulsed field gradient NMR study of the translational mobility in porous media: restricted diffusion, internal magnetic fields, flows and molecular exchange
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2005
SP  - 68
EP  - 79
VL  - 147
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2005_147_2_a5/
LA  - en
ID  - UZKU_2005_147_2_a5
ER  - 
%0 Journal Article
%A V. D. Skirda
%A A. R. Mutina
%A R. V. Arkhipov
%T Pulsed field gradient NMR study of the translational mobility in porous media: restricted diffusion, internal magnetic fields, flows and molecular exchange
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2005
%P 68-79
%V 147
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2005_147_2_a5/
%G en
%F UZKU_2005_147_2_a5
V. D. Skirda; A. R. Mutina; R. V. Arkhipov. Pulsed field gradient NMR study of the translational mobility in porous media: restricted diffusion, internal magnetic fields, flows and molecular exchange. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 147 (2005) no. 2, pp. 68-79. http://geodesic.mathdoc.fr/item/UZKU_2005_147_2_a5/

[1] Valiullin R. R., Skirda V. D., Kimmich R., Stapf S., “Molecular exchange processes in partially filled porous glass as seen with NMR diffusometry”, Phys. Rev. E, 55 (1997), 2664–2671 | DOI

[2] Valiullin R. R., Skirda V. D., “Time dependent self-diffusion coefficient of molecules in porous media”, J. Chem. Phys., 114 (2001), 452–458 | DOI

[3] Fordham E. G., Gibbs S. J., Hall L. D., “Partially restricted diffusion in a permeable sandstone: Observations by stimulated echo PFG NMR”, Magn. Res. Imaging, 12 (1994), 279–284 | DOI

[4] Hurlimann M. D., Helmer K. G., Latour L. L., Sotak C. H., “Restricted diffusion in sedimentary rocks. Determination of surface-area-to-volume ratio and surface relaxivity”, J. Magn. Reson., 111A (1994), 169–178

[5] Latour L. L., Mitra P. P., Kleinberg R. L., Sotak C. H., “Time-dependent diffusion coefficient of fluids in porous vedia as a probe of surface-to-volume ratio”, J. Magn. Reson., 101A (1993), 342–346

[6] Mitra P. P., Sen P. N., Swartz L. M., “Short-time behavior of the diffusion coefficient as a geometrical probe of porous media”, Phys. Rev. B, 47 (1993), 8565–8574 | DOI

[7] Callaghan P. T., “Pulsed-gradient spin-echo NMR for planar, cylindrical, and spherical pores under conditions of wall relaxation”, J. Magn. Reson., 113A (1994), 53–59

[8] Linse P., Soderman O., “The validity of the short-gradient-pulse approximation in NMR studies of restricted Diffusion. Simulations of Molecules Diffusing between Planes, in cylinders and spheres”, J. Magn. Reson., 116A (1995), 77–86

[9] Neuman C. H., “Spin echo of spins diffusing in a bounded medium”, J. Chem. Phys., 60 (1974), 4508–4511 | DOI

[10] Blees M. H., “The effect of finite duration of gradient pulses on the pulsed-field-gradient NMR method for studying restricted diffusion”, J. Magn. Reson., 109A (1994), 203–209

[11] Tanner J. E., “Transient diffusion in a system partitioned by permeable barriers. Application to NMR measurements with a pulsed field gradient”, J. Chem. Phys., 69 (1978), 1748–1754 | DOI

[12] Balinov B., Jonsson B., Linse P., Soderman O., “The NMR self-diffusion method applied to restricted diffusion. Simulation of echo attenuation from molecules in spheres and between planes”, J. Magn. Reson., 104 A (1993), 17–25 | DOI

[13] Katz A. J., Thompson A. H., “Fractal sandstone pores: implications for conductivity and pore formation”, Phys. Rev. Lett., 54 (1985), 1325–1328 | DOI

[14] Borgia G. C., Brown R. J. S., Fantazzini P., “Scaling of spin-echo amplitudes with frequency, diffusion coefficient, pore size, and susceptibility difference for the NMR of fluids in porous media and biological tissues”, Phys. Rev. E, 51 (1995), 2104–2114 | DOI

[15] Chachaty C., Korb J.-P., Van der Maarel J.-P. C., Bras W., Quinn P., “Fractal structure of a cross-linked polymer resin: a small-angle x-ray scattering, pulsed field gradient, and paramagnetic relaxation study”, Phys. Rev. B, 44 (1991), 4778–4793 | DOI

[16] Song Y.-Q., “Detection of the high eigenmodes of spin diffusion in porous media”, Phys. Rev. Lett., 85 (2000), 3878–3881 | DOI

[17] Song Y.-Q., “Using internal magnetic fields to obtain pore size distributions of porous media”, Concepts in Magn. Reson., 18A (2003), 97–110 | DOI | Zbl

[18] Song Y.-Q., Lisitza N. V., Allen D. F., Kenyon W. E., “Pore geometry and its geological evolution in carbonate rocks”, Petrophysics, 43 (2002), 420–427

[19] Le Doussal P., Sen P. N., “Decay of nuclear magnetization by diffusion in a parabolic magnetic field: An exactly solvable model”, Phys. Rev. B, 46 (1992), 3465–3485 | DOI

[20] Callaghan P. T., Coy A., Macgowan D., Packer K. J., “Diffusion of fluids in porous solids probed by pulsed field gradient spin echo NMR”, J. Molec. Liq., 54 (1992), 215–228 | DOI

[21] Seymour J. D., Callaghan P. T., “Generalized approach to NMR analysis of flow and dispersion in porous media”, J. of AIChE, 43 (1997), 2096–2111 | DOI

[22] Callaghan P. T., Codd S. L., Seymour J. D., “Spatial coherence phenomena arising from translational spin motion in gradient spin echo experiments”, Concepts Magn. Reson., 11 (1999), 181–202 | 3.0.CO;2-T class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[23] Dvoyashkin N. K., Skirda V. D., Maklakov A. I., Belousova M. V., Valiullin R. R., “Peculiarities of self-diffusion of Alkane molecules in Kaolinite”, Appl. Magn. Reson., 2:1 (1991), 83–91 | DOI

[24] Orazio F. D., Bhattacharja S., Halperin W. P., “Enhanced self-diffusion of water in restricted geometry”, Phys. Rev. Lett., 63 (1989), 43–46 | DOI

[25] Maklakov A. I., Dvoyashkin N. K., Khozina E. V., Skirda V. D., “Temperature dependence of tridecane self-diffusion coefficient in porous media”, Colloid J. of Colloid and Polymer Science, 55:1 (1995), 55–60

[26] Maklakov A. I., Dvoyashkin N. K., Khozina E. V., “New “gas-like” state of liquid in porous media”, Colloid J. of Colloid and Polymer Science, 55 (1993), 79–83

[27] Karger J., “Zur massbarkeit von diffusionkoeffizienten in zweiphase system mit hilfe der methode der gepulsten feldgradienten”, Annalen der Physik, 24:1–2 (1969), 1–7 | DOI

[28] Maklakov A. I., Skirda V. D., Fatkullin N. F., Self-diffusion in polymer systems, in encyclopedia of fluid mechanics, ed. N. Cheremisinoff, Gulf Publ.Co., Houston, 1990, 705 pp.