@article{UZKU_2005_147_2_a5,
author = {V. D. Skirda and A. R. Mutina and R. V. Arkhipov},
title = {Pulsed field gradient {NMR} study of the translational mobility in porous media: restricted diffusion, internal magnetic fields, flows and molecular exchange},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {68--79},
year = {2005},
volume = {147},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_2_a5/}
}
TY - JOUR AU - V. D. Skirda AU - A. R. Mutina AU - R. V. Arkhipov TI - Pulsed field gradient NMR study of the translational mobility in porous media: restricted diffusion, internal magnetic fields, flows and molecular exchange JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2005 SP - 68 EP - 79 VL - 147 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2005_147_2_a5/ LA - en ID - UZKU_2005_147_2_a5 ER -
%0 Journal Article %A V. D. Skirda %A A. R. Mutina %A R. V. Arkhipov %T Pulsed field gradient NMR study of the translational mobility in porous media: restricted diffusion, internal magnetic fields, flows and molecular exchange %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2005 %P 68-79 %V 147 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2005_147_2_a5/ %G en %F UZKU_2005_147_2_a5
V. D. Skirda; A. R. Mutina; R. V. Arkhipov. Pulsed field gradient NMR study of the translational mobility in porous media: restricted diffusion, internal magnetic fields, flows and molecular exchange. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 147 (2005) no. 2, pp. 68-79. http://geodesic.mathdoc.fr/item/UZKU_2005_147_2_a5/
[1] Valiullin R. R., Skirda V. D., Kimmich R., Stapf S., “Molecular exchange processes in partially filled porous glass as seen with NMR diffusometry”, Phys. Rev. E, 55 (1997), 2664–2671 | DOI
[2] Valiullin R. R., Skirda V. D., “Time dependent self-diffusion coefficient of molecules in porous media”, J. Chem. Phys., 114 (2001), 452–458 | DOI
[3] Fordham E. G., Gibbs S. J., Hall L. D., “Partially restricted diffusion in a permeable sandstone: Observations by stimulated echo PFG NMR”, Magn. Res. Imaging, 12 (1994), 279–284 | DOI
[4] Hurlimann M. D., Helmer K. G., Latour L. L., Sotak C. H., “Restricted diffusion in sedimentary rocks. Determination of surface-area-to-volume ratio and surface relaxivity”, J. Magn. Reson., 111A (1994), 169–178
[5] Latour L. L., Mitra P. P., Kleinberg R. L., Sotak C. H., “Time-dependent diffusion coefficient of fluids in porous vedia as a probe of surface-to-volume ratio”, J. Magn. Reson., 101A (1993), 342–346
[6] Mitra P. P., Sen P. N., Swartz L. M., “Short-time behavior of the diffusion coefficient as a geometrical probe of porous media”, Phys. Rev. B, 47 (1993), 8565–8574 | DOI
[7] Callaghan P. T., “Pulsed-gradient spin-echo NMR for planar, cylindrical, and spherical pores under conditions of wall relaxation”, J. Magn. Reson., 113A (1994), 53–59
[8] Linse P., Soderman O., “The validity of the short-gradient-pulse approximation in NMR studies of restricted Diffusion. Simulations of Molecules Diffusing between Planes, in cylinders and spheres”, J. Magn. Reson., 116A (1995), 77–86
[9] Neuman C. H., “Spin echo of spins diffusing in a bounded medium”, J. Chem. Phys., 60 (1974), 4508–4511 | DOI
[10] Blees M. H., “The effect of finite duration of gradient pulses on the pulsed-field-gradient NMR method for studying restricted diffusion”, J. Magn. Reson., 109A (1994), 203–209
[11] Tanner J. E., “Transient diffusion in a system partitioned by permeable barriers. Application to NMR measurements with a pulsed field gradient”, J. Chem. Phys., 69 (1978), 1748–1754 | DOI
[12] Balinov B., Jonsson B., Linse P., Soderman O., “The NMR self-diffusion method applied to restricted diffusion. Simulation of echo attenuation from molecules in spheres and between planes”, J. Magn. Reson., 104 A (1993), 17–25 | DOI
[13] Katz A. J., Thompson A. H., “Fractal sandstone pores: implications for conductivity and pore formation”, Phys. Rev. Lett., 54 (1985), 1325–1328 | DOI
[14] Borgia G. C., Brown R. J. S., Fantazzini P., “Scaling of spin-echo amplitudes with frequency, diffusion coefficient, pore size, and susceptibility difference for the NMR of fluids in porous media and biological tissues”, Phys. Rev. E, 51 (1995), 2104–2114 | DOI
[15] Chachaty C., Korb J.-P., Van der Maarel J.-P. C., Bras W., Quinn P., “Fractal structure of a cross-linked polymer resin: a small-angle x-ray scattering, pulsed field gradient, and paramagnetic relaxation study”, Phys. Rev. B, 44 (1991), 4778–4793 | DOI
[16] Song Y.-Q., “Detection of the high eigenmodes of spin diffusion in porous media”, Phys. Rev. Lett., 85 (2000), 3878–3881 | DOI
[17] Song Y.-Q., “Using internal magnetic fields to obtain pore size distributions of porous media”, Concepts in Magn. Reson., 18A (2003), 97–110 | DOI | Zbl
[18] Song Y.-Q., Lisitza N. V., Allen D. F., Kenyon W. E., “Pore geometry and its geological evolution in carbonate rocks”, Petrophysics, 43 (2002), 420–427
[19] Le Doussal P., Sen P. N., “Decay of nuclear magnetization by diffusion in a parabolic magnetic field: An exactly solvable model”, Phys. Rev. B, 46 (1992), 3465–3485 | DOI
[20] Callaghan P. T., Coy A., Macgowan D., Packer K. J., “Diffusion of fluids in porous solids probed by pulsed field gradient spin echo NMR”, J. Molec. Liq., 54 (1992), 215–228 | DOI
[21] Seymour J. D., Callaghan P. T., “Generalized approach to NMR analysis of flow and dispersion in porous media”, J. of AIChE, 43 (1997), 2096–2111 | DOI
[22] Callaghan P. T., Codd S. L., Seymour J. D., “Spatial coherence phenomena arising from translational spin motion in gradient spin echo experiments”, Concepts Magn. Reson., 11 (1999), 181–202 | 3.0.CO;2-T class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[23] Dvoyashkin N. K., Skirda V. D., Maklakov A. I., Belousova M. V., Valiullin R. R., “Peculiarities of self-diffusion of Alkane molecules in Kaolinite”, Appl. Magn. Reson., 2:1 (1991), 83–91 | DOI
[24] Orazio F. D., Bhattacharja S., Halperin W. P., “Enhanced self-diffusion of water in restricted geometry”, Phys. Rev. Lett., 63 (1989), 43–46 | DOI
[25] Maklakov A. I., Dvoyashkin N. K., Khozina E. V., Skirda V. D., “Temperature dependence of tridecane self-diffusion coefficient in porous media”, Colloid J. of Colloid and Polymer Science, 55:1 (1995), 55–60
[26] Maklakov A. I., Dvoyashkin N. K., Khozina E. V., “New “gas-like” state of liquid in porous media”, Colloid J. of Colloid and Polymer Science, 55 (1993), 79–83
[27] Karger J., “Zur massbarkeit von diffusionkoeffizienten in zweiphase system mit hilfe der methode der gepulsten feldgradienten”, Annalen der Physik, 24:1–2 (1969), 1–7 | DOI
[28] Maklakov A. I., Skirda V. D., Fatkullin N. F., Self-diffusion in polymer systems, in encyclopedia of fluid mechanics, ed. N. Cheremisinoff, Gulf Publ.Co., Houston, 1990, 705 pp.