Operators on leaves of the foliation generated by locally free action of $\mathbb R$
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 55-64
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a manifold $M$ with foliation $F$, we construct an inclusion $$ \phi:C_0(M)|_L\to C_0(L)\times\prod_\mathbb ZC([0,1]) $$ where $L$ is a leaf of $F$ and $C_0(X)$ is the space of continuous functions with compact support. Using $\phi$, we study properties of operators on the spaces of functions on leaves of the foliation $F$. We also find properties of spectra of Schroedinger-type operators on the leaves of $F$.
@article{UZKU_2005_147_1_a6,
     author = {P. N. Ivanshin},
     title = {Operators on leaves of the foliation generated by locally free action of $\mathbb R$},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {55--64},
     year = {2005},
     volume = {147},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a6/}
}
TY  - JOUR
AU  - P. N. Ivanshin
TI  - Operators on leaves of the foliation generated by locally free action of $\mathbb R$
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2005
SP  - 55
EP  - 64
VL  - 147
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a6/
LA  - ru
ID  - UZKU_2005_147_1_a6
ER  - 
%0 Journal Article
%A P. N. Ivanshin
%T Operators on leaves of the foliation generated by locally free action of $\mathbb R$
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2005
%P 55-64
%V 147
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a6/
%G ru
%F UZKU_2005_147_1_a6
P. N. Ivanshin. Operators on leaves of the foliation generated by locally free action of $\mathbb R$. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 55-64. http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a6/

[1] Ivanshin P. N., “Structure of function algebras on foliated manifolds”, Lobachevskii J. Math., 2004, no. 14, 39–54 ; URL: http://www.ljm.ksu.ru | MR | Zbl

[2] Ivanshin P. N., “Struktura algebry ogranichennykh beskonechno differentsiruemykh funktsii na gruppoide mnogoobraziya so sloeniem, porozhdennym deistviem kommutativnoi gruppy”, Izv. vuzov. Matematika, 2004, no. 5, 37–40 | MR

[3] Levitan B. M., Pochti-periodicheskie funktsii, GITTL, M., 1953, 496 pp.

[4] Melo S. T., “Characterizations of pseudodifferential operators on the circle”, Proc. of the AMS, 125:5 (1997), 1407–1412 | DOI | MR | Zbl

[5] Milnor Dzh., Golomorfnaya dinamika, RKhD, Izhevsk, 2000, 320 pp.

[6] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982, 432 pp. | MR

[7] Rofe-Beketov F. S., “O spektre nesamosopryazhennykh differentsialnykh operatorov s periodicheskim koeffitsientami”, Dokl. AN SSSR, 152:6 (1953), 1312–1315 | MR

[8] Tamura I., Topologiya sloenii, Mir, M., 1979, 320 pp. | MR | Zbl

[9] Uells R., Differentsialnoe ischislenie na kompleksnykh mnogoobraziyakh, Mir, M., 1976, 288 pp. | MR

[10] Fell J. M. G., “The structure of algebras of operator fields”, Acta Math., 106:3–4 (1961), 233–280 | DOI | MR | Zbl

[11] Furstenberg H., “Strict ergodicity and transformation of the torus”, American J. of Mathematics, LXXXIII:3 (1961), 573–602 | DOI | MR

[12] Sherstnev A. N., Konspekt lektsii po matematicheskomu analizu, UNIPRESS, Kazan, 1998, 488 pp.

[13] Shin K. C., On the shape of spectra for non-self-adjoint periodic Schrödinger operators, 6 Apr. 2004, arXiv: math-ph/0404015v1 | MR