Quantum de Rham cohomology ring for Poisson manifolds
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 192-196 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In [4] we have proved that the quantum de Rham cohomology of a Poisson manifold $(M, \omega)$ (see [1]) can be obtained via deformational quantization of the de Rham cohomology of $M$. In this paper we prove that the ring structure on the quantum cohomology of $(M,\omega)$ is obtained via deformational quantization of the ring structure of de Rham cohomology of $M$.
@article{UZKU_2005_147_1_a18,
     author = {V. V. Shurygin (Jr.)},
     title = {Quantum de {Rham} cohomology ring for {Poisson} manifolds},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {192--196},
     year = {2005},
     volume = {147},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a18/}
}
TY  - JOUR
AU  - V. V. Shurygin (Jr.)
TI  - Quantum de Rham cohomology ring for Poisson manifolds
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2005
SP  - 192
EP  - 196
VL  - 147
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a18/
LA  - ru
ID  - UZKU_2005_147_1_a18
ER  - 
%0 Journal Article
%A V. V. Shurygin (Jr.)
%T Quantum de Rham cohomology ring for Poisson manifolds
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2005
%P 192-196
%V 147
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a18/
%G ru
%F UZKU_2005_147_1_a18
V. V. Shurygin (Jr.). Quantum de Rham cohomology ring for Poisson manifolds. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 192-196. http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a18/

[1] Cao H.-D., Zhou J., On quantum de Rham cohomology, Preprint math.DG/9806157, 1998

[2] Koszul J.-L., “Crochet de Schouten-Nijenhuis et cohomologie”, The mathematical heritage of Élie Cartan (Lyon, 1984), Astérisque, 1985, Numero Hors Serie, 257–271 | MR | Zbl

[3] A. Lichnerowicz, “Les variétés de Poisson et leurs algèbres de Lie associées”, J. Diff. Geom., 12 (1977), 253–300 | MR | Zbl

[4] Shurygin V. V.(ml.), “Kogomologii dvoinogo kompleksa Brylinskogo puassonovykh mnogoobrazii i kvantovye kogomologii de Rama”, Izv. vuzov. Matematika, 2004, no. 10, 75–81 | MR | Zbl