Quantum de Rham cohomology ring for Poisson manifolds
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 192-196
Cet article a éte moissonné depuis la source Math-Net.Ru
In [4] we have proved that the quantum de Rham cohomology of a Poisson manifold $(M, \omega)$ (see [1]) can be obtained via deformational quantization of the de Rham cohomology of $M$. In this paper we prove that the ring structure on the quantum cohomology of $(M,\omega)$ is obtained via deformational quantization of the ring structure of de Rham cohomology of $M$.
@article{UZKU_2005_147_1_a18,
author = {V. V. Shurygin (Jr.)},
title = {Quantum de {Rham} cohomology ring for {Poisson} manifolds},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {192--196},
year = {2005},
volume = {147},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a18/}
}
TY - JOUR AU - V. V. Shurygin (Jr.) TI - Quantum de Rham cohomology ring for Poisson manifolds JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2005 SP - 192 EP - 196 VL - 147 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a18/ LA - ru ID - UZKU_2005_147_1_a18 ER -
V. V. Shurygin (Jr.). Quantum de Rham cohomology ring for Poisson manifolds. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 192-196. http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a18/
[1] Cao H.-D., Zhou J., On quantum de Rham cohomology, Preprint math.DG/9806157, 1998
[2] Koszul J.-L., “Crochet de Schouten-Nijenhuis et cohomologie”, The mathematical heritage of Élie Cartan (Lyon, 1984), Astérisque, 1985, Numero Hors Serie, 257–271 | MR | Zbl
[3] A. Lichnerowicz, “Les variétés de Poisson et leurs algèbres de Lie associées”, J. Diff. Geom., 12 (1977), 253–300 | MR | Zbl
[4] Shurygin V. V.(ml.), “Kogomologii dvoinogo kompleksa Brylinskogo puassonovykh mnogoobrazii i kvantovye kogomologii de Rama”, Izv. vuzov. Matematika, 2004, no. 10, 75–81 | MR | Zbl