On principal directions of hyperquadric in Hilbert space
    
    
  
  
  
      
      
      
        
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 173-180
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
            
              A hypersurface in an $(n+1)$-dimensional Euclidean space has $n$ principal directions at each point: the eigenvectors of the Weingarten operator. And for a hypersurface in the infinite-dimensional Hilbert space, the Weingarten operator possibly has no eigenvectors. In the present paper we show that a hyperquadric in the Hilbert space determined by a positive definite quadratic form has principal directions under some additional assumptions. For a given direction we write an explicit expression for the point of the hyperquadric where this direction is principal. Also we give examples of these hyperquadrics.
            
            
            
          
        
      @article{UZKU_2005_147_1_a16,
     author = {V. E. Fomin},
     title = {On principal directions of hyperquadric in {Hilbert} space},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {173--180},
     publisher = {mathdoc},
     volume = {147},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a16/}
}
                      
                      
                    TY - JOUR AU - V. E. Fomin TI - On principal directions of hyperquadric in Hilbert space JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2005 SP - 173 EP - 180 VL - 147 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a16/ LA - ru ID - UZKU_2005_147_1_a16 ER -
V. E. Fomin. On principal directions of hyperquadric in Hilbert space. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 173-180. http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a16/
