On principal directions of hyperquadric in Hilbert space
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 173-180
Cet article a éte moissonné depuis la source Math-Net.Ru
A hypersurface in an $(n+1)$-dimensional Euclidean space has $n$ principal directions at each point: the eigenvectors of the Weingarten operator. And for a hypersurface in the infinite-dimensional Hilbert space, the Weingarten operator possibly has no eigenvectors. In the present paper we show that a hyperquadric in the Hilbert space determined by a positive definite quadratic form has principal directions under some additional assumptions. For a given direction we write an explicit expression for the point of the hyperquadric where this direction is principal. Also we give examples of these hyperquadrics.
@article{UZKU_2005_147_1_a16,
author = {V. E. Fomin},
title = {On principal directions of hyperquadric in {Hilbert} space},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {173--180},
year = {2005},
volume = {147},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a16/}
}
TY - JOUR AU - V. E. Fomin TI - On principal directions of hyperquadric in Hilbert space JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2005 SP - 173 EP - 180 VL - 147 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a16/ LA - ru ID - UZKU_2005_147_1_a16 ER -
V. E. Fomin. On principal directions of hyperquadric in Hilbert space. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 173-180. http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a16/
[1] Burbaki N., Differentsiruemye i analiticheskie mnogoobraziya. Svodka rezultatov, Nauka, M., 1975 | MR
[2] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964
[3] Norden A. P., Teoriya poverkhnostei, GITTL, M., 1956
[4] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967