On principal directions of hyperquadric in Hilbert space
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 173-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A hypersurface in an $(n+1)$-dimensional Euclidean space has $n$ principal directions at each point: the eigenvectors of the Weingarten operator. And for a hypersurface in the infinite-dimensional Hilbert space, the Weingarten operator possibly has no eigenvectors. In the present paper we show that a hyperquadric in the Hilbert space determined by a positive definite quadratic form has principal directions under some additional assumptions. For a given direction we write an explicit expression for the point of the hyperquadric where this direction is principal. Also we give examples of these hyperquadrics.
@article{UZKU_2005_147_1_a16,
     author = {V. E. Fomin},
     title = {On principal directions of hyperquadric in {Hilbert} space},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {173--180},
     year = {2005},
     volume = {147},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a16/}
}
TY  - JOUR
AU  - V. E. Fomin
TI  - On principal directions of hyperquadric in Hilbert space
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2005
SP  - 173
EP  - 180
VL  - 147
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a16/
LA  - ru
ID  - UZKU_2005_147_1_a16
ER  - 
%0 Journal Article
%A V. E. Fomin
%T On principal directions of hyperquadric in Hilbert space
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2005
%P 173-180
%V 147
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a16/
%G ru
%F UZKU_2005_147_1_a16
V. E. Fomin. On principal directions of hyperquadric in Hilbert space. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 173-180. http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a16/

[1] Burbaki N., Differentsiruemye i analiticheskie mnogoobraziya. Svodka rezultatov, Nauka, M., 1975 | MR

[2] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964

[3] Norden A. P., Teoriya poverkhnostei, GITTL, M., 1956

[4] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967