Actions of automorphisms groups on Weil bundles
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 159-172
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work the irreductibility of the Weil algebra is proved and the notion of the Whitney sum of the Weil algebra is introduced. It is proved that if $m$ is a width, $k$ — a radical dimension, $r$ — a Weil algebra index, then the dimension of automorphism group of this algebra equals $mk-r$. The left and right actions of the automorphism group of the Weil algebra are constructed on the Weil bundle.
@article{UZKU_2005_147_1_a15,
author = {A. Ya. Sultanov},
title = {Actions of automorphisms groups on {Weil} bundles},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {159--172},
year = {2005},
volume = {147},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a15/}
}
TY - JOUR AU - A. Ya. Sultanov TI - Actions of automorphisms groups on Weil bundles JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2005 SP - 159 EP - 172 VL - 147 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a15/ LA - ru ID - UZKU_2005_147_1_a15 ER -
A. Ya. Sultanov. Actions of automorphisms groups on Weil bundles. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 159-172. http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a15/
[1] Vishnevskii V. V., Shirokov A. P., Shurygin V. V., Prostranstva nad algebrami, Izd-vo Kazan. un-ta, Kazan, 1985, 263 pp. | MR
[2] Postnikov M. M., Gruppy i algebry Li, Nauka, M., 1982, 447 pp. | MR
[3] Morimoto A., “Prolongation of connections to bundles of infinitely near points”, J. Diff. Geom., 1976, no. 4, 479–498 | MR | Zbl