Actions of automorphisms groups on Weil bundles
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 159-172
Voir la notice du chapitre de livre
In this work the irreductibility of the Weil algebra is proved and the notion of the Whitney sum of the Weil algebra is introduced. It is proved that if $m$ is a width, $k$ — a radical dimension, $r$ — a Weil algebra index, then the dimension of automorphism group of this algebra equals $mk-r$. The left and right actions of the automorphism group of the Weil algebra are constructed on the Weil bundle.
@article{UZKU_2005_147_1_a15,
author = {A. Ya. Sultanov},
title = {Actions of automorphisms groups on {Weil} bundles},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {159--172},
year = {2005},
volume = {147},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a15/}
}
TY - JOUR AU - A. Ya. Sultanov TI - Actions of automorphisms groups on Weil bundles JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2005 SP - 159 EP - 172 VL - 147 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a15/ LA - ru ID - UZKU_2005_147_1_a15 ER -
A. Ya. Sultanov. Actions of automorphisms groups on Weil bundles. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 159-172. http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a15/
[1] Vishnevskii V. V., Shirokov A. P., Shurygin V. V., Prostranstva nad algebrami, Izd-vo Kazan. un-ta, Kazan, 1985, 263 pp. | MR
[2] Postnikov M. M., Gruppy i algebry Li, Nauka, M., 1982, 447 pp. | MR
[3] Morimoto A., “Prolongation of connections to bundles of infinitely near points”, J. Diff. Geom., 1976, no. 4, 479–498 | MR | Zbl