On infinitesimal automorphisms of almost symplectic structures on tangent bundle of generalized Lagrangian space
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 154-158
Cet article a éte moissonné depuis la source Math-Net.Ru
Almost symplectic structure is defined on tangent bundle of generalized Lagrange space. It is proved that natural infinitesimal transformation is infinitesimal automorphism of almost symplectic structure if and only if it is infinitesimal motion of generalized Lagrange space. If arbitrary infinitesimal automorphism conserves certain linear connection and foliate structure then dimensionality of algebra Lie of automorphisms not exceed $n(3n+5)/2$, $n$ — dimensionality of basis manifold.
@article{UZKU_2005_147_1_a14,
author = {M. V. Sorokina},
title = {On infinitesimal automorphisms of almost symplectic structures on tangent bundle of generalized {Lagrangian} space},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {154--158},
year = {2005},
volume = {147},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a14/}
}
TY - JOUR AU - M. V. Sorokina TI - On infinitesimal automorphisms of almost symplectic structures on tangent bundle of generalized Lagrangian space JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2005 SP - 154 EP - 158 VL - 147 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a14/ LA - ru ID - UZKU_2005_147_1_a14 ER -
%0 Journal Article %A M. V. Sorokina %T On infinitesimal automorphisms of almost symplectic structures on tangent bundle of generalized Lagrangian space %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2005 %P 154-158 %V 147 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a14/ %G ru %F UZKU_2005_147_1_a14
M. V. Sorokina. On infinitesimal automorphisms of almost symplectic structures on tangent bundle of generalized Lagrangian space. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 154-158. http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a14/
[1] Shapukov B. N., “Avtomorfizmy rassloennykh prostranstv”, Tr. geom. sem., 14, Izd-vo Kazan. un-ta, Kazan, 1982, 97–108 | MR
[2] Eizenkhart L. P., Nepreryvnye gruppy preobrazovanii, IL, M., 1947