On infinitesimal automorphisms of almost symplectic structures
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 148-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

On the tangent bundle $TM$ of a manifold $M$ endowed with an almost symplectic structure $\omega$ and a linear connection $\nabla$ compatible with $\omega$, we consider the Riemannian metric $G$ which is Hermitian with respect to the canonical almost complex structure $J$ and the corresponding almost symplectic structure $\Omega$. We study the infinitesimal automorphisms of these structures on $TM$, and, in particular, prove that the dimension of the Lie algebra of natural automorphisms of $G$ and of $\Omega$ is less than or equal to $n(n+3)/2$.
@article{UZKU_2005_147_1_a13,
     author = {V. I. Panzhenskij},
     title = {On infinitesimal automorphisms of almost symplectic structures},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {148--153},
     year = {2005},
     volume = {147},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a13/}
}
TY  - JOUR
AU  - V. I. Panzhenskij
TI  - On infinitesimal automorphisms of almost symplectic structures
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2005
SP  - 148
EP  - 153
VL  - 147
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a13/
LA  - ru
ID  - UZKU_2005_147_1_a13
ER  - 
%0 Journal Article
%A V. I. Panzhenskij
%T On infinitesimal automorphisms of almost symplectic structures
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2005
%P 148-153
%V 147
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a13/
%G ru
%F UZKU_2005_147_1_a13
V. I. Panzhenskij. On infinitesimal automorphisms of almost symplectic structures. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 148-153. http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a13/

[1] Libermann P., “Automorphismes infinitesimaux d'une structure symplectique”, C. R. Acad. Sci., 242:9 (1956), 1114–1117 | MR | Zbl

[2] Levin Yu. I., “Ob affinnykh svyaznostyakh, prisoedinennykh k kososimmetricheskomu tenzoru”, Dokl. AN SSSR, 128:4 (1959), 668–671 | MR

[3] Eizenkhart L. P., Nepreryvnye gruppy preobrazovanii, IL, M., 1947

[4] Shapukov B. N., “Lineinye svyaznosti vektornogo rassloeniya”, Tr. geom. sem., 8, Izd-vo Kazan. un-ta, Kazan, 1975, 118–131

[5] Shapukov B. N., “Avtomorfizmy rassloennykh prostranstv”, Tr. geom. sem., 14, Izd-vo Kazan. un-ta, Kazan, 1980, 97–108 | MR