On infinitesimal automorphisms of almost symplectic structures
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 148-153
Cet article a éte moissonné depuis la source Math-Net.Ru
On the tangent bundle $TM$ of a manifold $M$ endowed with an almost symplectic structure $\omega$ and a linear connection $\nabla$ compatible with $\omega$, we consider the Riemannian metric $G$ which is Hermitian with respect to the canonical almost complex structure $J$ and the corresponding almost symplectic structure $\Omega$. We study the infinitesimal automorphisms of these structures on $TM$, and, in particular, prove that the dimension of the Lie algebra of natural automorphisms of $G$ and of $\Omega$ is less than or equal to $n(n+3)/2$.
@article{UZKU_2005_147_1_a13,
author = {V. I. Panzhenskij},
title = {On infinitesimal automorphisms of almost symplectic structures},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {148--153},
year = {2005},
volume = {147},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a13/}
}
TY - JOUR AU - V. I. Panzhenskij TI - On infinitesimal automorphisms of almost symplectic structures JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2005 SP - 148 EP - 153 VL - 147 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a13/ LA - ru ID - UZKU_2005_147_1_a13 ER -
V. I. Panzhenskij. On infinitesimal automorphisms of almost symplectic structures. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Труды геометрического семинара, Tome 147 (2005) no. 1, pp. 148-153. http://geodesic.mathdoc.fr/item/UZKU_2005_147_1_a13/
[1] Libermann P., “Automorphismes infinitesimaux d'une structure symplectique”, C. R. Acad. Sci., 242:9 (1956), 1114–1117 | MR | Zbl
[2] Levin Yu. I., “Ob affinnykh svyaznostyakh, prisoedinennykh k kososimmetricheskomu tenzoru”, Dokl. AN SSSR, 128:4 (1959), 668–671 | MR
[3] Eizenkhart L. P., Nepreryvnye gruppy preobrazovanii, IL, M., 1947
[4] Shapukov B. N., “Lineinye svyaznosti vektornogo rassloeniya”, Tr. geom. sem., 8, Izd-vo Kazan. un-ta, Kazan, 1975, 118–131
[5] Shapukov B. N., “Avtomorfizmy rassloennykh prostranstv”, Tr. geom. sem., 14, Izd-vo Kazan. un-ta, Kazan, 1980, 97–108 | MR