The limit of a multi-valued function that is defined on a partially ordered set
    
    
  
  
  
      
      
      
        
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Functional analysis and theory of functions. 6, Tome 129 (1969) no. 3, pp. 76-88
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
@article{UZKU_1969_129_3_a5,
     author = {A. Ya. Vol'pert},
     title = {The limit of a multi-valued function that is defined on a~partially ordered set},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {76--88},
     publisher = {mathdoc},
     volume = {129},
     number = {3},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_1969_129_3_a5/}
}
                      
                      
                    TY - JOUR AU - A. Ya. Vol'pert TI - The limit of a multi-valued function that is defined on a partially ordered set JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 1969 SP - 76 EP - 88 VL - 129 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_1969_129_3_a5/ LA - ru ID - UZKU_1969_129_3_a5 ER -
%0 Journal Article %A A. Ya. Vol'pert %T The limit of a multi-valued function that is defined on a partially ordered set %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 1969 %P 76-88 %V 129 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_1969_129_3_a5/ %G ru %F UZKU_1969_129_3_a5
A. Ya. Vol'pert. The limit of a multi-valued function that is defined on a partially ordered set. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Functional analysis and theory of functions. 6, Tome 129 (1969) no. 3, pp. 76-88. http://geodesic.mathdoc.fr/item/UZKU_1969_129_3_a5/
