The limit of a multi-valued function that is defined on a partially ordered set
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Functional analysis and theory of functions. 6, Tome 129 (1969) no. 3, pp. 76-88
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{UZKU_1969_129_3_a5,
author = {A. Ya. Vol'pert},
title = {The limit of a multi-valued function that is defined on a~partially ordered set},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {76--88},
year = {1969},
volume = {129},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_1969_129_3_a5/}
}
TY - JOUR AU - A. Ya. Vol'pert TI - The limit of a multi-valued function that is defined on a partially ordered set JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 1969 SP - 76 EP - 88 VL - 129 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_1969_129_3_a5/ LA - ru ID - UZKU_1969_129_3_a5 ER -
%0 Journal Article %A A. Ya. Vol'pert %T The limit of a multi-valued function that is defined on a partially ordered set %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 1969 %P 76-88 %V 129 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_1969_129_3_a5/ %G ru %F UZKU_1969_129_3_a5
A. Ya. Vol'pert. The limit of a multi-valued function that is defined on a partially ordered set. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Functional analysis and theory of functions. 6, Tome 129 (1969) no. 3, pp. 76-88. http://geodesic.mathdoc.fr/item/UZKU_1969_129_3_a5/