The limit of a multi-valued function that is defined on a partially ordered set
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Functional analysis and theory of functions. 6, Tome 129 (1969) no. 3, pp. 76-88

Voir la notice du chapitre de livre provenant de la source Math-Net.Ru

@article{UZKU_1969_129_3_a5,
     author = {A. Ya. Vol'pert},
     title = {The limit of a multi-valued function that is defined on a~partially ordered set},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {76--88},
     publisher = {mathdoc},
     volume = {129},
     number = {3},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_1969_129_3_a5/}
}
TY  - JOUR
AU  - A. Ya. Vol'pert
TI  - The limit of a multi-valued function that is defined on a partially ordered set
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 1969
SP  - 76
EP  - 88
VL  - 129
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZKU_1969_129_3_a5/
LA  - ru
ID  - UZKU_1969_129_3_a5
ER  - 
%0 Journal Article
%A A. Ya. Vol'pert
%T The limit of a multi-valued function that is defined on a partially ordered set
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 1969
%P 76-88
%V 129
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZKU_1969_129_3_a5/
%G ru
%F UZKU_1969_129_3_a5
A. Ya. Vol'pert. The limit of a multi-valued function that is defined on a partially ordered set. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Functional analysis and theory of functions. 6, Tome 129 (1969) no. 3, pp. 76-88. http://geodesic.mathdoc.fr/item/UZKU_1969_129_3_a5/