Vertex distinguishing proper edge colorings of the corona products of graphs
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 58 (2024) no. 2, pp. 47-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

A proper edge coloring of a graph $G$ is a mapping $f:E(G)\longrightarrow\mathbb{Z}_{\geq 0}$ such that $f(e)\not=f(e')$ for every pair of adjacent edges $e$ and $e'$ in $G$. A proper edge coloring $f$ of a graph $G$ is called vertex distinguishing, if for any different vertices $u,v \in V(G)$, $S(u, f) \ne S(v, f)$, where $S(v, f) = \{f(e) \ | \ e = uv \in E(G)\}$. The minimum number of colors required for a vertex distinguishing proper coloring of a graph $G$ is denoted by $\chi'_{vd}(G)$ and called vertex distinguishing chromatic index of $G$. In this paper we provide lower and upper bounds on the vertex distinguishing chromatic index of the corona products of graphs.
Keywords: edge coloring, proper edge coloring, vertex distinguishing proper coloring, corona product
@article{UZERU_2024_58_2_a1,
     author = {T. K. Petrosyan},
     title = {Vertex distinguishing proper edge colorings of the corona products of graphs},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {47--56},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2024_58_2_a1/}
}
TY  - JOUR
AU  - T. K. Petrosyan
TI  - Vertex distinguishing proper edge colorings of the corona products of graphs
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2024
SP  - 47
EP  - 56
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2024_58_2_a1/
LA  - en
ID  - UZERU_2024_58_2_a1
ER  - 
%0 Journal Article
%A T. K. Petrosyan
%T Vertex distinguishing proper edge colorings of the corona products of graphs
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2024
%P 47-56
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2024_58_2_a1/
%G en
%F UZERU_2024_58_2_a1
T. K. Petrosyan. Vertex distinguishing proper edge colorings of the corona products of graphs. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 58 (2024) no. 2, pp. 47-56. http://geodesic.mathdoc.fr/item/UZERU_2024_58_2_a1/

[1] D. B. West, Introduction to Graph Theory, Prentice-Hall, New Jersey, 2001 https://dwest.web.illinois.edu/igt/

[2] A. C. Burris, R. H. Schelp, “Vertex-Distinguishing Proper Edge-colorings”, J. Graph Theory, 26 (1997), 73–82 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[3] J. Cerny, M. Hornak, R. Sotak, “Observability of a Graph”, Math. Slovaca, 46 (1996), 21–31 | class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[4] A. C. Burris, Vertex-Distinguishing Edge-Colorings, Ph.D. Thesis, Memphis State University, Tennessee, Memphis, 1993 https://www.memphis.edu/msci/people/pbalistr/vdecg.pdf

[5] M. Hornak, R. Sotak, “Observability of Complete Multipartite Graphs with Equipotent Parts”, Ars Comb., 41 (1995), 289–301 | MR

[6] P. N. Balister, B. Bollobas, R. H. Schelp, “Vertex Distinguishing Coloring of Graphs with $\Delta(G)=2$”, Discrete Math., 252 (2002), 17–29 | DOI | MR

[7] R.W. Frucht, F. Harary, “On the Corona of Two Graphs”, Aequationes Math., 4 (1970), 322–325 | DOI | MR

[8] J.-L. Baril, H. Kheddouci, O. Togni, “Vertex Distinguishing Edge- and Total-Colorings of Cartesian and Other Product Graphs”, Ars Comb., 107 (2012), 109–127