Almost identities in groups
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 58 (2024) no. 1, pp. 8-12

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we construct a group $G$, which generates the variety of all groups. At the same time, in each ball of the Cayley graph of this group $G$, the ratio of the number of elements that satisfy a fixed equation of the form $x^n=1$ to the number of all elements of this ball tends to one when the radius of the ball tends to $\infty$ .
Keywords: $n$-periodic product, identity, probability, Cayley graph
@article{UZERU_2024_58_1_a1,
     author = {G. G. Gevorgyan and V. G. Dilanyan},
     title = {Almost identities in groups},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {8--12},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2024_58_1_a1/}
}
TY  - JOUR
AU  - G. G. Gevorgyan
AU  - V. G. Dilanyan
TI  - Almost identities in groups
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2024
SP  - 8
EP  - 12
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2024_58_1_a1/
LA  - en
ID  - UZERU_2024_58_1_a1
ER  - 
%0 Journal Article
%A G. G. Gevorgyan
%A V. G. Dilanyan
%T Almost identities in groups
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2024
%P 8-12
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2024_58_1_a1/
%G en
%F UZERU_2024_58_1_a1
G. G. Gevorgyan; V. G. Dilanyan. Almost identities in groups. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 58 (2024) no. 1, pp. 8-12. http://geodesic.mathdoc.fr/item/UZERU_2024_58_1_a1/