Almost identities in groups
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 58 (2024) no. 1, pp. 8-12
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work we construct a group $G$, which generates the variety of all groups. At the same time, in each ball of the Cayley graph of this group $G$, the ratio of the number of elements that satisfy a fixed equation of the form $x^n=1$ to the number of all elements of this ball tends to one when the radius of the ball tends to $\infty$ .
Keywords:
$n$-periodic product, identity, probability, Cayley graph
@article{UZERU_2024_58_1_a1,
author = {G. G. Gevorgyan and V. G. Dilanyan},
title = {Almost identities in groups},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {8--12},
publisher = {mathdoc},
volume = {58},
number = {1},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2024_58_1_a1/}
}
TY - JOUR AU - G. G. Gevorgyan AU - V. G. Dilanyan TI - Almost identities in groups JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2024 SP - 8 EP - 12 VL - 58 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2024_58_1_a1/ LA - en ID - UZERU_2024_58_1_a1 ER -
G. G. Gevorgyan; V. G. Dilanyan. Almost identities in groups. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 58 (2024) no. 1, pp. 8-12. http://geodesic.mathdoc.fr/item/UZERU_2024_58_1_a1/