Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2023_57_3_a3, author = {D. A. Manukyan}, title = {The resonant response of strongly coupled nanorods to the electromagnetic wave}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {101--110}, publisher = {mathdoc}, volume = {57}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2023_57_3_a3/} }
TY - JOUR AU - D. A. Manukyan TI - The resonant response of strongly coupled nanorods to the electromagnetic wave JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2023 SP - 101 EP - 110 VL - 57 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2023_57_3_a3/ LA - en ID - UZERU_2023_57_3_a3 ER -
%0 Journal Article %A D. A. Manukyan %T The resonant response of strongly coupled nanorods to the electromagnetic wave %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2023 %P 101-110 %V 57 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2023_57_3_a3/ %G en %F UZERU_2023_57_3_a3
D. A. Manukyan. The resonant response of strongly coupled nanorods to the electromagnetic wave. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 57 (2023) no. 3, pp. 101-110. http://geodesic.mathdoc.fr/item/UZERU_2023_57_3_a3/
[1] L. M. Liz-Marzán, C. J. Murphy, J. Wang, “Nanoplasmonics”, Chem. Soc. Rev., 29 (2014), 3820 | DOI
[2] S. Kasani, K. Curtin, N. Wu, “A Review of 2D and 3D Plasmonic Nanostructure Array Patterns: Fabrication, Light Management and Sensing Applications”, Nanophotonics, 8 (2019), 2065–2089 | DOI
[3] B. Li, Sh. Zu, et al., “Single-Nanoparticle Plasmonic Electro-Optic Modulator Based on MoS$_2$ Monolayers”, ACS Nano, 11 (2017), 9720–9727 | DOI
[4] P. Liu, H. Chen, et al., “Fabrication of Si/Au Core/Shell Nanoplasmonic Structures with Ultrasensitive Surface-Enhanced Raman Scattering for Monolayer Molecule Detection.”, J. Phys. Chem. C, 119 (2015), 1234–1246 | DOI
[5] R. Frost, C. Wadell, et al., “Core-Shell Nanoplasmonic Sensing for Characterization of Biocorona Formation and Nanoparticle Surface Interactions”, ACS Sensors, 1 (2016), 798–806 | DOI
[6] C. A. Downing, E. Mariani, G. Weick, “Radiative Frequency Shifts in Nanoplasmonic Dimers”, Phys. Rev. B, 96 (2017), 155421 | DOI
[7] G. Aguirregabiria, D. C. Marinica, et al., “Role of Electron Tunneling in the Nonlinear Response of Plasmonic Nanogaps”, Phys. Rev. B, 97 (2018), 155430 | DOI
[8] A.C.Y. Liu, J. Lloyd, et al., “Mapping Local Surface Plasmon Modes in a Nanoplasmonic Trimer Using Cathodoluminescence in the Scanning Electron Microscope”, Microsc. Microanal., 26 (2020), 808–813 | DOI
[9] J. R. Sperling, G. Macias, et al., “Multilayered Nanoplasmonic Arrays for Self-Referenced Biosensing”, ACS Appl. Mater. Interfaces, 10 (2018) | DOI
[10] D. Paria, C. Zhang, I. Barman, “Towards Rational Design and Optimization of Near-Field Enhancement and Spectral Tunability of Hybrid Core-Shell Plasmonic Nanoprobes”, Sci. Rep., 9 (2019), 16071 | DOI
[11] B. Sharma, R. R. Frontiera, et al., “SERS: Materials, Applications, and the Future”, Mater. Today, 15 (2012) | DOI
[12] M. Kauranen, A.V. Zayats, “Nonlinear Plasmonics”, Nature Photonics, 6:11 (2012), 737–748 | DOI
[13] M. I. Stockman, “Nanoplasmonics: Past, Present, and Glimpse into Future”, Opt. Express, 19 (2011), 22029 | DOI
[14] R. Esteban, A. Zugarramurdi, et al., “A Classical Treatment of Optical Tunneling in Plasmonic Gaps: Extending the Quantum Corrected Model to Practical Situations”, Faraday Discuss., 178 (2015), 151–183 | DOI
[15] S. Babar, J. H. Weaver, “Optical Constants of Cu, Ag, and Au Revisited”, Appl. Opt., 54 (2015), 477 | DOI
[16] N. J. Halas, S. Lal, et al., “Plasmons in Strongly Coupled Metallic Nanostructures”, Chem. Rev., 111 (2011), 3913–3961 | DOI
[17] A. Tr{\..u}gler, J.-C. Tinguely, et al., “Influence of Surface Roughness on the Optical Properties of Plasmonic Nanoparticles”, Phys. Rev. B, 83 (2011), 081412 | DOI
[18] P. Zhang, “Scaling for Quantum Tunneling Current in Nano- and Subnano-Scale Plasmonic Junctions”, Sci. Rep., 5 (2015), 9826 | DOI
[19] D. L. Logan, A First Course in the Finite Element Method, Cengage Learning, United Kingdom, , 2011 https://books.google.am/books?id=KGZtCgAAQBAJ
[20] F. Benzi, B. de Nijs, et al., “Generalized Circuit Model for Coupled Plasmonic Systems”, Opt. Express, 23 (2015), 33255 | DOI
[21] L. D. Landau, E. M. Lifshitz, L. P. Pitaevskii, Electrodynamics of Continuous Media, Elsivier Sciences and Technology, Oxford, 1984 | MR