The Moore–Penrose inverse of tridiagonal skew-symmetric matrices. II
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 57 (2023) no. 2, pp. 31-43
Cet article a éte moissonné depuis la source Math-Net.Ru
This article is the second part of the work started in the previous publication by the authors [1]. The results presented here relate to deriving closed form expressions for the elements of the Moore–Penrose inverse of tridiagonal real skew-symmetric matrices of odd order. On the base of the formulas obtained, an algorithm that is optimal in terms of the amount of computational efforts is constructed.
Keywords:
Moore–Penrose inverse, skew-symmetric matrix
Mots-clés : tridiagonal matrix.
Mots-clés : tridiagonal matrix.
@article{UZERU_2023_57_2_a0,
author = {Yu. R. Hakopian and A. A. Manukian and G. V. Mikaelyan},
title = {The {Moore{\textendash}Penrose} inverse of tridiagonal skew-symmetric matrices. {II}},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {31--43},
year = {2023},
volume = {57},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2023_57_2_a0/}
}
TY - JOUR AU - Yu. R. Hakopian AU - A. A. Manukian AU - G. V. Mikaelyan TI - The Moore–Penrose inverse of tridiagonal skew-symmetric matrices. II JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2023 SP - 31 EP - 43 VL - 57 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_2023_57_2_a0/ LA - en ID - UZERU_2023_57_2_a0 ER -
%0 Journal Article %A Yu. R. Hakopian %A A. A. Manukian %A G. V. Mikaelyan %T The Moore–Penrose inverse of tridiagonal skew-symmetric matrices. II %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2023 %P 31-43 %V 57 %N 2 %U http://geodesic.mathdoc.fr/item/UZERU_2023_57_2_a0/ %G en %F UZERU_2023_57_2_a0
Yu. R. Hakopian; A. A. Manukian; G. V. Mikaelyan. The Moore–Penrose inverse of tridiagonal skew-symmetric matrices. II. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 57 (2023) no. 2, pp. 31-43. http://geodesic.mathdoc.fr/item/UZERU_2023_57_2_a0/
[1] Yu. R. Hakopian, A. H. Manukyan, H. V. Mikaelyan, “The Moore-Penrose Inverse of Tridiagonal Skew-Symmetric Matrices. I”, Proc. of the YSU. Phys. and Math. Sci., 57 (2023), 1–8 | DOI
[2] A. Ben-Israel, N. E. Greville-Thomas, Generalized Inverses: Theory and Applications, Springer-Verlag, New York, 2003 | MR | Zbl
[3] Yu. R. Hakopian, A. H. Manukyan, “Analytical Inversion of Tridiagonal Hermitian Matrices”, Mathematical Problems of Computer Science, 58 (2022), 7–19 | DOI | MR