The Moore--Penrose inverse of tridiagonal skew-symmetric matrices. II
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 57 (2023) no. 2, pp. 31-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is the second part of the work started in the previous publication by the authors [1]. The results presented here relate to deriving closed form expressions for the elements of the Moore–Penrose inverse of tridiagonal real skew-symmetric matrices of odd order. On the base of the formulas obtained, an algorithm that is optimal in terms of the amount of computational efforts is constructed.
Keywords: Moore–Penrose inverse, skew-symmetric matrix
Mots-clés : tridiagonal matrix.
@article{UZERU_2023_57_2_a0,
     author = {Yu. R. Hakopian and A. A. Manukian and G. V. Mikaelyan},
     title = {The {Moore--Penrose} inverse of tridiagonal skew-symmetric matrices.  {II}},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {31--43},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2023_57_2_a0/}
}
TY  - JOUR
AU  - Yu. R. Hakopian
AU  - A. A. Manukian
AU  - G. V. Mikaelyan
TI  - The Moore--Penrose inverse of tridiagonal skew-symmetric matrices.  II
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2023
SP  - 31
EP  - 43
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2023_57_2_a0/
LA  - en
ID  - UZERU_2023_57_2_a0
ER  - 
%0 Journal Article
%A Yu. R. Hakopian
%A A. A. Manukian
%A G. V. Mikaelyan
%T The Moore--Penrose inverse of tridiagonal skew-symmetric matrices.  II
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2023
%P 31-43
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2023_57_2_a0/
%G en
%F UZERU_2023_57_2_a0
Yu. R. Hakopian; A. A. Manukian; G. V. Mikaelyan. The Moore--Penrose inverse of tridiagonal skew-symmetric matrices.  II. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 57 (2023) no. 2, pp. 31-43. http://geodesic.mathdoc.fr/item/UZERU_2023_57_2_a0/

[1] Yu. R. Hakopian, A. H. Manukyan, H. V. Mikaelyan, “The Moore-Penrose Inverse of Tridiagonal Skew-Symmetric Matrices. I”, Proc. of the YSU. Phys. and Math. Sci., 57 (2023), 1–8 | DOI

[2] A. Ben-Israel, N. E. Greville-Thomas, Generalized Inverses: Theory and Applications, Springer-Verlag, New York, 2003 | MR | Zbl

[3] Yu. R. Hakopian, A. H. Manukyan, “Analytical Inversion of Tridiagonal Hermitian Matrices”, Mathematical Problems of Computer Science, 58 (2022), 7–19 | DOI | MR