The Moore--Penrose inverse of tridiagonal skew-symmetric matrices. I
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 57 (2023) no. 1, pp. 1-8
Voir la notice de l'article provenant de la source Math-Net.Ru
The present work is devoted to deriving closed form expressions for the elements of the Moore–Penrose inverse of tridiagonal real skew-symmetric matrices. In the first part of the work we obtain results, concerning matrices of even order. A calculation approach for the generalized inverses of odd order matrices is provided.
Keywords:
Moore–Penrose inverse, skew-symmetric matrix
Mots-clés : tridiagonal matrix.
Mots-clés : tridiagonal matrix.
@article{UZERU_2023_57_1_a0,
author = {Yu. R. Hakopian and A. A. Manukian and G. V. Mikaelyan},
title = {The {Moore--Penrose} inverse of tridiagonal skew-symmetric matrices. {I}},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {1--8},
publisher = {mathdoc},
volume = {57},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2023_57_1_a0/}
}
TY - JOUR AU - Yu. R. Hakopian AU - A. A. Manukian AU - G. V. Mikaelyan TI - The Moore--Penrose inverse of tridiagonal skew-symmetric matrices. I JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2023 SP - 1 EP - 8 VL - 57 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2023_57_1_a0/ LA - en ID - UZERU_2023_57_1_a0 ER -
%0 Journal Article %A Yu. R. Hakopian %A A. A. Manukian %A G. V. Mikaelyan %T The Moore--Penrose inverse of tridiagonal skew-symmetric matrices. I %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2023 %P 1-8 %V 57 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2023_57_1_a0/ %G en %F UZERU_2023_57_1_a0
Yu. R. Hakopian; A. A. Manukian; G. V. Mikaelyan. The Moore--Penrose inverse of tridiagonal skew-symmetric matrices. I. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 57 (2023) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/UZERU_2023_57_1_a0/