The Moore--Penrose inverse of tridiagonal skew-symmetric matrices. I
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 57 (2023) no. 1, pp. 1-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present work is devoted to deriving closed form expressions for the elements of the Moore–Penrose inverse of tridiagonal real skew-symmetric matrices. In the first part of the work we obtain results, concerning matrices of even order. A calculation approach for the generalized inverses of odd order matrices is provided.
Keywords: Moore–Penrose inverse, skew-symmetric matrix
Mots-clés : tridiagonal matrix.
@article{UZERU_2023_57_1_a0,
     author = {Yu. R. Hakopian and A. A. Manukian and G. V. Mikaelyan},
     title = {The  {Moore--Penrose}  inverse  of  tridiagonal  skew-symmetric  matrices.  {I}},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2023_57_1_a0/}
}
TY  - JOUR
AU  - Yu. R. Hakopian
AU  - A. A. Manukian
AU  - G. V. Mikaelyan
TI  - The  Moore--Penrose  inverse  of  tridiagonal  skew-symmetric  matrices.  I
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2023
SP  - 1
EP  - 8
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2023_57_1_a0/
LA  - en
ID  - UZERU_2023_57_1_a0
ER  - 
%0 Journal Article
%A Yu. R. Hakopian
%A A. A. Manukian
%A G. V. Mikaelyan
%T The  Moore--Penrose  inverse  of  tridiagonal  skew-symmetric  matrices.  I
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2023
%P 1-8
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2023_57_1_a0/
%G en
%F UZERU_2023_57_1_a0
Yu. R. Hakopian; A. A. Manukian; G. V. Mikaelyan. The  Moore--Penrose  inverse  of  tridiagonal  skew-symmetric  matrices.  I. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 57 (2023) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/UZERU_2023_57_1_a0/

[1] N. A. Balonin, M. B. Sergeev, Special Matrices: Pseudoinverse, Orthogonal, Hadamard and Cretan, Polytechnika Publ., Saint-Petersburg, 2019, 196 pp. (in Russian) | DOI

[2] J. R. Bunch, “A Note on the Stable Decomposition of Skew-Symmetric Matrices”, Math. Comput., 38(158) (1982), 475–479 | DOI | MR | Zbl

[3] P. Benner, R. Byers, et al., “Cholesky-like Factorization of Skew-symmetric Matrices”, Electron. Trans. Numer. Anal., 11 (2000), 85–93 | DOI | MR | Zbl

[4] G. Heinig, K. Rost, “Fast Algorithms for Skew-symmetric Toeplitz Matrices”, Operator Theory: Advances and Applications, 135 (2002), 193–208 | DOI | MR | Zbl

[5] C. Greif, J. M. Varah, “Iterative Solution of Skew-symmetric Linear Systems”, SIAM J. Matrix Anal. Appl., 31 (2002), 584–601 | DOI | MR

[6] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics, Philadelphia, 2000 | MR | Zbl

[7] G. Strang, Linear Algebra and its Applications, Academic Press, New York, San Francisco, London, 1976 | DOI | MR | Zbl

[8] A. Ben-Israel, N. E. Greville-Thomas, Generalized Inverses: Theory and Applications, Springer-Verlag, New York, 2003 | MR | Zbl