Imaging of microwave near-field distribution of GPS patch antenna
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 56 (2022) no. 2, pp. 66-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

Microwave near-field distribution of the GPS patch antenna was visualized by a thermo-elastic optical indicator microscopy (TEOIM) technique at 1.575 GHz. Visualization of the antenna radiation is realized to describe the electromagnetic field intensity and distribution depending on the distance from the antenna surface and optical indicator. Experimental data was compared and confirmed with simulation results, which are in good agreement. Possible applications of the TEOIM system were discussed.
Keywords: near-field imaging, thermo-elastic optical indicator microscopy.
Mots-clés : GPS antenna
@article{UZERU_2022_56_2_a3,
     author = {Zh. A. Baghdasaryan},
     title = {Imaging of microwave near-field distribution of {GPS} patch antenna},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {66--73},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2022_56_2_a3/}
}
TY  - JOUR
AU  - Zh. A. Baghdasaryan
TI  - Imaging of microwave near-field distribution of GPS patch antenna
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2022
SP  - 66
EP  - 73
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2022_56_2_a3/
LA  - en
ID  - UZERU_2022_56_2_a3
ER  - 
%0 Journal Article
%A Zh. A. Baghdasaryan
%T Imaging of microwave near-field distribution of GPS patch antenna
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2022
%P 66-73
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2022_56_2_a3/
%G en
%F UZERU_2022_56_2_a3
Zh. A. Baghdasaryan. Imaging of microwave near-field distribution of GPS patch antenna. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 56 (2022) no. 2, pp. 66-73. http://geodesic.mathdoc.fr/item/UZERU_2022_56_2_a3/

[1] W. Fan, P. Kyosti, M. Rumney, et al., “Over-the-air Radiated Testing of Millimeter-wave Beam-steerable Devices in a Cost-effective Measurement Setup”, IEEE Commun. Mag., 56 (2018), 64–71 | DOI

[2] W. Xue, X. Chen, M. Zhang, et al., “Statistical Analysis of Antenna Efficiency Measurements with Non-Reference Antenna Methods in a Reverberation Chamber”, IEEE Access, 8 (2020), 113967–113980 | DOI

[3] D. M. Pozar, B. Kaufman, “Comparison of Three Methods for the Measurement of Printed Antenna Efficiency”, IEEE Trans. Antennas Propag., 36 (1988), 136–139 | DOI

[4] Q. Luo, Y. Zhou, Y. Qi, et al., “Rapid Test Method for Multi-beam Profile of Phased Array Antennas”, Sensors, 22 (2022) | DOI

[5] L. Coq Le, N. Mèzières, P. Leroy, B. Fuchs, “Some Contributions for Antenna 3D far Field Characterization at Terahertz”, Sensors, 21 (2021) | DOI

[6] F. Rodriguez Varela, M.J. Lòpez Morales, R. Tena Sànchez, et al., “Multi-Probe Measurement System Based on Single-Cut Transformation for Fast Testing of Linear Arrays”, Sensors, 21 (2021), 1744 | DOI

[7] A. Capozzoli, C. Curcio, A. Liseno, “Different Metrics for Singular Value Optimization in Near-field Antenna Characterization”, Sensors, 21 (2021) | DOI

[8] F. D’agostino, F. Ferrara, C. Gennarelli, et al., “Reconstruction of the Far-field Pattern of Volumetric Auts from a Reduced Set of Near-field Samples Collected along a Planar Spiral with a Uniform Step”, Sensors, 21 (2021) | DOI | Zbl

[9] S. Arakelyan, H. Lee, A. Babajanyan, et al., “Antenna Investigation by a Thermoelastic Optical Indicator Microscope: Defects Measurement and 3D Visualization of Electro- magnetic Fields”, IEEE Antennas Propag. Mag., 61 (2019), 27–31 | DOI

[10] E. G. Doust, M. Clènet, V. Hemmati, J. Wight, “An Aperture-coupled Circularly Polarized Stacked Microstrip Antenna for GPS Frequency Bands L1, L2, and L5”, Antennas Propag. Usn. Natl. Radio Sci. Meet. APSURSI (IEEE Int. Symp.), 2008, 25–28 | DOI

[11] F. Zhang, N. Qiao, J. Li, “A PCB Photoelectric Image Edge Information Detection Method”, Optik (Stuttg), 144 (2017), 2010–2012 | DOI

[12] D. Kacprzak, T. Taniguchi, K. Nakamura, et al., “Novel Eddy Current Testing Sensor for the Inspection of Printed Circuit Boards”, IEEE Trans. Magn., 37 (2001), 2010–2012 | DOI

[13] H. Lee, S. Arakelyan, B. Friedman, K. Lee, “Temperature and Microwave near Field Imaging by Thermo-elastic Optical Indicator Microscopy”, Sci. Rep., 6 (2016), 1–11 | DOI

[14] N. Yoshikawa, “Fundamentals and Applications of Microwave Heating of Metals”, J. Microw. Power Electromagn. Energy, 44 (2010), 4–13 | DOI

[15] H. Bosman, Y. Y. Lau, R. M. Gilgenbach, “Microwave Absorption on a Thin Film”, Appl. Phys. Lett., 82:9 (2003), 1353 | DOI

[16] H. Lee, Z. Baghdasaryan, B. Friedman, K. Lee, “Detection of a Conductive Object Embedded in an Optically Opaque Dielectric Medium by the Thermo-elastic Optical Indicator Microscopy”, IEEE Access, 7 (2019), 46084–46091 | DOI