On automorphism groups of endomorphism semigroups of finite elementary Abelian groups
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 56 (2022) no. 2, pp. 49-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we explore the automorphisms of endomorphism semigroups and automorphism groups of the finite elementary Abelian groups. In particular, we prove that $\mathrm{Aut}(\mathrm{End}(\mathbb{Z}_p\oplus\mathbb{Z}_p\oplus\cdots\oplus\mathbb{Z}_p))$ can be canonically embedded into $\mathrm{Aut}(\mathrm{Aut}(\mathbb{Z}_p\oplus\mathbb{Z}_p\oplus\cdots\oplus\mathbb{Z}_p))$ using an elementary approach based on matrix operations. We also show that all automorphisms of $\mathrm{End}(\mathbb{Z}_p\oplus\mathbb{Z}_p\oplus\cdots\oplus\mathbb{Z}_p)$ are inner.
Keywords: automorphisms of matrix semigroups, finite elementary Abelian groups, automorphisms of endomorphism semigroup.
@article{UZERU_2022_56_2_a1,
     author = {A. A. Bayramyan},
     title = {On automorphism groups of endomorphism semigroups of finite elementary {Abelian} groups},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {49--57},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2022_56_2_a1/}
}
TY  - JOUR
AU  - A. A. Bayramyan
TI  - On automorphism groups of endomorphism semigroups of finite elementary Abelian groups
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2022
SP  - 49
EP  - 57
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2022_56_2_a1/
LA  - en
ID  - UZERU_2022_56_2_a1
ER  - 
%0 Journal Article
%A A. A. Bayramyan
%T On automorphism groups of endomorphism semigroups of finite elementary Abelian groups
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2022
%P 49-57
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2022_56_2_a1/
%G en
%F UZERU_2022_56_2_a1
A. A. Bayramyan. On automorphism groups of endomorphism semigroups of finite elementary Abelian groups. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 56 (2022) no. 2, pp. 49-57. http://geodesic.mathdoc.fr/item/UZERU_2022_56_2_a1/

[1] B. I. Plotkin, Seven Lectures on the Universal Algebraic Geometry, Preprint, 2002, 87 pp., arXiv: math/0204245[math.GM] | MR

[2] E. Formanek, “A Question of B. Plotkin about the Semigroup of Endomorphisms of a Free Group”, Proc. American Math. Society, 130 (2001), 935–937 | DOI | MR | Zbl

[3] V. S. Atabekyan, “The Automorphisms of Endomorphism Semigroups of Free Burnside Groups”, Intern. J. Algebra and Computation, 25:04 (2015), 669–674 | DOI | MR | Zbl

[4] V. S. Atabekyan, H. T. Aslanyan, “The Automorphisms of Endomorphism Semigroups of Relatively Free Groups”, International Journal of Algebra and Computation, 28 (2018), 207–215 | DOI | MR | Zbl

[5] L. M. Gluskin, “Automorphisms of Multiplicative Semigroups of Matrix Algebras”, Uspehi Mat. Nauk (N.S.), 11:1 (1956), 199–206 (in Russian) | MR | Zbl

[6] E. A. Halezov, “Automorphisms of Matrix Semigroups”, Dokl. Akad. Nauk SSSR, 96:2 (1954), 245–248 (in Russian) | MR | Zbl

[7] W. C. Waterhouse, “Two Generators for the General Linear Groups over Finite Fields”, Linear Multilinear Algebra, 24 (1988), 227–230 | DOI | MR

[8] J. Dieudonne, “On the Automorphisms of the Classical Groups”, Mem. Amer. Math. Soc., 2 (1951), 1–95 | DOI | MR

[9] W. C. Waterhouse, “Automorphisms of $\mathrm{GL}_n(R)$”, Proc. Am. Math. Soc., 79:3 (1980), 347–351 | DOI | MR | Zbl