On independent systems of defining relations for free Burnside groups of period 3
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 3, pp. 153-159

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct systems of independent defining relations for free Burnside groups $B(m,3)$ of ranks $m=2, 3$. The proof for the case $m=2$ is established using the matrix representation of $B(2,3)$. For the case $m=3$ the approach is based on the natural embedding of $B(2,3)$ into $B(3,3)$.
Keywords: independent system of defining relations, free Burnside group, periodic group
Mots-clés : $p$-group.
@article{UZERU_2021_55_3_a0,
     author = {A. A. Bayramyan},
     title = {On independent systems of defining relations for free {Burnside} groups of period 3},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {153--159},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2021_55_3_a0/}
}
TY  - JOUR
AU  - A. A. Bayramyan
TI  - On independent systems of defining relations for free Burnside groups of period 3
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2021
SP  - 153
EP  - 159
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2021_55_3_a0/
LA  - en
ID  - UZERU_2021_55_3_a0
ER  - 
%0 Journal Article
%A A. A. Bayramyan
%T On independent systems of defining relations for free Burnside groups of period 3
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2021
%P 153-159
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2021_55_3_a0/
%G en
%F UZERU_2021_55_3_a0
A. A. Bayramyan. On independent systems of defining relations for free Burnside groups of period 3. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 3, pp. 153-159. http://geodesic.mathdoc.fr/item/UZERU_2021_55_3_a0/