Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2021_55_1_a1, author = {T. M. Grigoryan and A. A. Maranjyan}, title = {On the unconditional convergence of {Faber--Schauder} series in $L^{1}$}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {12--19}, publisher = {mathdoc}, volume = {55}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a1/} }
TY - JOUR AU - T. M. Grigoryan AU - A. A. Maranjyan TI - On the unconditional convergence of Faber--Schauder series in $L^{1}$ JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2021 SP - 12 EP - 19 VL - 55 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a1/ LA - en ID - UZERU_2021_55_1_a1 ER -
%0 Journal Article %A T. M. Grigoryan %A A. A. Maranjyan %T On the unconditional convergence of Faber--Schauder series in $L^{1}$ %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2021 %P 12-19 %V 55 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a1/ %G en %F UZERU_2021_55_1_a1
T. M. Grigoryan; A. A. Maranjyan. On the unconditional convergence of Faber--Schauder series in $L^{1}$. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 1, pp. 12-19. http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a1/
[1] J. Schauder, “Zur Theorie stetiger Abbildungen in Funktionalräumen”, Mathematische Zeitschrift, 26:1 (1927), 47–65 | DOI | MR | Zbl
[2] A. A. Talalyan, “The Representation Of Measurable Functions By Series”, Russian Math. Surveys, 15:5 (1960), 75–136 | DOI | MR | Zbl
[3] C. Goffman, “Remark on a Problem of Lusin”, Acta Math., 111:1,2 (1964), 63–72 | DOI | MR | Zbl
[4] N. N. Luzin, Integral and Trigonometrical Series, Gostehizdat, Moscow, 1951 (in Russian) | MR
[5] D. Menchoff, “Sur la representation des fonctions mesurables par des series trigonmetrices”, Rec. Math. [Mat. Sbornik] N.S., 9(51):3 (1941), 667–692 | MR | Zbl
[6] S. Karlin, “Bases in Banach Spaces”, Duke Math. J., 15:4 (1948), 971–985 | DOI | MR | Zbl
[7] T. M. Grigorian, “On the Unconditional Convergence of Series with Respect to the Faber–Schauder System”, An. Math., 39 (2013), 179—188 | DOI | MR | Zbl
[8] M. G. Grigoryan, A. A. Sargsyan, “Non-linear Approximation of Continuous Functions by the Faber–Schauder System”, Sib. Math. J., 59 (2018), 835–842 | DOI | MR | Zbl
[9] M. G. Grigoryan, A. A. Sargsyan, “Non-linear Approximation of Continuous Functions by the Faber–Schauder System”, Sb. Math., 199:5 (2008), 629–653 | DOI | MR
[10] V. G. Krotov, “Representation of Measurable Functions by Series in the Faber–Schauder System, and Universal Series”, Math. USSR-Izv., 11:1 (1977), 205–218 | DOI | MR | Zbl
[11] M. G. Grigoryan, V. G. Krotov, “Quasiunconditional Basis Property of the Faber–Schauder System”, Ukr. Math. J., 71 (2019), 237–247 | DOI | MR | Zbl
[12] A. A. Sargsyan, “On Faber–Schauder Coefficients of Continuous Functions and Divergence of Greedy Algorithm”, Russ. Math., 63 (2019), 57–62 | DOI | MR | Zbl