On the unconditional convergence of Faber--Schauder series in $L^{1}$
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 1, pp. 12-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we proved that the Faber–Schauder functions form an unconditional representation system for $L^1$.
Keywords: Faber–Schauder system, unconditional representation, $L^1$ space.
Mots-clés : convergence
@article{UZERU_2021_55_1_a1,
     author = {T. M. Grigoryan and A. A. Maranjyan},
     title = {On the unconditional convergence of {Faber--Schauder} series in $L^{1}$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {12--19},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a1/}
}
TY  - JOUR
AU  - T. M. Grigoryan
AU  - A. A. Maranjyan
TI  - On the unconditional convergence of Faber--Schauder series in $L^{1}$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2021
SP  - 12
EP  - 19
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a1/
LA  - en
ID  - UZERU_2021_55_1_a1
ER  - 
%0 Journal Article
%A T. M. Grigoryan
%A A. A. Maranjyan
%T On the unconditional convergence of Faber--Schauder series in $L^{1}$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2021
%P 12-19
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a1/
%G en
%F UZERU_2021_55_1_a1
T. M. Grigoryan; A. A. Maranjyan. On the unconditional convergence of Faber--Schauder series in $L^{1}$. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 1, pp. 12-19. http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a1/

[1] J. Schauder, “Zur Theorie stetiger Abbildungen in Funktionalräumen”, Mathematische Zeitschrift, 26:1 (1927), 47–65 | DOI | MR | Zbl

[2] A. A. Talalyan, “The Representation Of Measurable Functions By Series”, Russian Math. Surveys, 15:5 (1960), 75–136 | DOI | MR | Zbl

[3] C. Goffman, “Remark on a Problem of Lusin”, Acta Math., 111:1,2 (1964), 63–72 | DOI | MR | Zbl

[4] N. N. Luzin, Integral and Trigonometrical Series, Gostehizdat, Moscow, 1951 (in Russian) | MR

[5] D. Menchoff, “Sur la representation des fonctions mesurables par des series trigonmetrices”, Rec. Math. [Mat. Sbornik] N.S., 9(51):3 (1941), 667–692 | MR | Zbl

[6] S. Karlin, “Bases in Banach Spaces”, Duke Math. J., 15:4 (1948), 971–985 | DOI | MR | Zbl

[7] T. M. Grigorian, “On the Unconditional Convergence of Series with Respect to the Faber–Schauder System”, An. Math., 39 (2013), 179—188 | DOI | MR | Zbl

[8] M. G. Grigoryan, A. A. Sargsyan, “Non-linear Approximation of Continuous Functions by the Faber–Schauder System”, Sib. Math. J., 59 (2018), 835–842 | DOI | MR | Zbl

[9] M. G. Grigoryan, A. A. Sargsyan, “Non-linear Approximation of Continuous Functions by the Faber–Schauder System”, Sb. Math., 199:5 (2008), 629–653 | DOI | MR

[10] V. G. Krotov, “Representation of Measurable Functions by Series in the Faber–Schauder System, and Universal Series”, Math. USSR-Izv., 11:1 (1977), 205–218 | DOI | MR | Zbl

[11] M. G. Grigoryan, V. G. Krotov, “Quasiunconditional Basis Property of the Faber–Schauder System”, Ukr. Math. J., 71 (2019), 237–247 | DOI | MR | Zbl

[12] A. A. Sargsyan, “On Faber–Schauder Coefficients of Continuous Functions and Divergence of Greedy Algorithm”, Russ. Math., 63 (2019), 57–62 | DOI | MR | Zbl