Explicit form of first integral and limit cycles for a class of planar Kolmogorov systems
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 1, pp. 1-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we characterize the integrability and the non-existence of limit cycles of Kolmogorov systems of the form \begin{equation}\nonumber \left\{ \begin{array}{l} x^{\prime }=x\left( R\left( x,y\right) \exp \left( \dfrac{A\left( x,y\right) }{B\left( x,y\right) }\right) +P\left( x,y\right) \exp \left( \dfrac{C\left( x,y\right) }{D\left( x,y\right) }\right) \right) , \\ \\ y^{\prime }=y\left( R\left( x,y\right) \exp \left( \dfrac{A\left( x,y\right) }{B\left( x,y\right) }\right) +Q\left( x,y\right) \exp \left( \dfrac{V\left( x,y\right) }{W\left( x,y\right) }\right) \right) , \end{array} \right. \end{equation} where $A\left( x,y\right) ,$ $B\left( x,y\right) ,$ $C\left( x,y\right) ,$ $D\left( x,y\right) ,$ $P\left( x,y\right) ,$ $Q\left( x,y\right) ,$ $R\left(x,y\right) ,V\left( x,y\right) ,$ $W\left( x,y\right) $ are homogeneous polynomials of degree $a,$ $a,$ $b,$ $b,$ $n,$ $n,$ $m,$ $c,$ $c,$ respectively. Concrete example exhibiting the applicability of our result is introduced.
Keywords: Kolmogorov system, first integral, periodic orbits, limit cycle.
@article{UZERU_2021_55_1_a0,
     author = {R. Boukoucha},
     title = {Explicit form of first integral and limit cycles for a class of planar {Kolmogorov} systems},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {1--11},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a0/}
}
TY  - JOUR
AU  - R. Boukoucha
TI  - Explicit form of first integral and limit cycles for a class of planar Kolmogorov systems
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2021
SP  - 1
EP  - 11
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a0/
LA  - en
ID  - UZERU_2021_55_1_a0
ER  - 
%0 Journal Article
%A R. Boukoucha
%T Explicit form of first integral and limit cycles for a class of planar Kolmogorov systems
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2021
%P 1-11
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a0/
%G en
%F UZERU_2021_55_1_a0
R. Boukoucha. Explicit form of first integral and limit cycles for a class of planar Kolmogorov systems. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 1, pp. 1-11. http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a0/

[1] P. Gao, “Hamiltonian Structure and First Integrals for the Lotka-Volterra Systems”, Phys. Lett. A, 273:1–2, 85–96 | DOI | MR | Zbl

[2] C. Li, J. Llibre, “The Cyclicity of Period Annulus of a Quadratic Reversible Lotka-Volterra System”, Nonlinearity, 22 (2009), 2971–2979 | DOI | MR | Zbl

[3] J. Llibre, C. Valls, “Polynomial, Rational and Analytic First Integrals for a Family of 3-Dimensional Lotka-Volterra Systems”, Z. Angew. Math. Phys., 62:5 (2011), 761–777 | DOI | MR | Zbl

[4] X. C. Huang, “Limit in a Kolmogorov-type Model and its Application in Immunology”, Internat J. of Mathematics and Mathematical Sciences, 13:3 (1990), 555–566 | DOI | MR | Zbl

[5] N. G. Llyod, J. M. Pearson, E. Saez, I. Szanto, “Limit Cycles of a Cubic Kolmogorov System”, Appl. Math. Lett., 9:1 (1990), 614–617 | DOI | MR

[6] R. M. May, Stability and Complexity in Model Ecosystems, New Jersey, 1974

[7] G. Lavel, R. Pellat, “Plasma Physics”, Proceedings of Summer School of Theoreal Physics, Gordon and Breach, New York, 1975

[8] F. H. Busse, Transition to Turbulence via the Statistical Limit Cycle Route, Springer-Verlag, Synergetics, Berlin, 1978, 39 pp. | DOI

[9] R. Boukoucha, A. Bendjeddou, “On the Dynamics of a Class of Rational Kolmogorov Systems”, Journal of Nonlinear Mathematical Physics, 23:1 (2016), 22–27 | DOI | MR

[10] R. Chavarriga J., Garcia I.A., “Existence of Limit Cycles for real Quadratic Differential Systems with an Invariant Cubic”, Pacific Journal of Mathematics, 223:2 (2006), 201–218 | DOI | MR | Zbl

[11] Kh. I. Taha Al-Dosary, “Non-algebraic Limit Cycles for Parameterized Planar Polynomial Systems”, Int. J. Math., 18:2 (2007), 179–189 | DOI | MR

[12] F. Dumortier, J. Llibre, J. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, Berlin, Heidelberg, 2006 | DOI | MR | Zbl

[13] J. Llibre, T. Salhi, “On the Dynamics of Class of Kolmogorov Systems”, J. Appl. Math. and Comput., 225 (2013), 242–245 | DOI | MR | Zbl

[14] L. Perko, Differential Equations and Dynamical Systems, Texts in Applied Mathematics, 7, Third edition, Springer-Verlag, New York, 2001 | DOI | MR | Zbl

[15] D. Hilbert, “Mathematische Probleme”, Lecture, Second Internat. Congr. Math. (Paris, 1900), Nachr. Ges. Wiss. Göttingen Math. Phys. Kl., 1900, 253–297 | Zbl

[16] A. Bendjeddou, R. Boukoucha, “Explicit Non-algebraic Limit Cycles of a Class of Polynomial Systems”, FJAM, 91:2 (2015), 133–142 | DOI | MR | Zbl

[17] A. Bendjeddou, R. Boukoucha, “Explicit Limit Cycles of a Cubic Polynomial Differential Systems”, Stud. Univ. Babes-Bolyai Math., 61:1 (2016), 77–85 | DOI | MR | Zbl

[18] R. Boukoucha, “On the Dynamics of a Class of Kolmogorov Systems”, J. Sib. Fed. Univ. Math. Phys., 9:1 (2016), 11–16 | DOI | MR | Zbl

[19] A. Gasull, H. Giacomini, J. Torregrosa, “Explicit Non-algebraic Limit Cycles for Polynomial Systems”, J. Comput. Appl. Math., 200 (2007), 448–457 | DOI | MR | Zbl

[20] L. Cairó, J. Llibre, “Phase portraits of cubic polynomial vector fields of Lotka–Volterra type having a rational first integral of degree 2”, J. Phys. A, 40:24 (2007), 6329–6348 | DOI | MR | Zbl