Vibrations of piezoelectric layer of class 6 $mm$ with initial conditions and with rigidly clamped and free edges
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 3, pp. 146-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of vibration of piezoelectric layer of class 6 $mm$ with the initial conditions with the form of impact of an external electric field or displacement, when one edge is rigidly grounded on the other one freely. Displacement layer and internal electric field are determined.
Keywords: electric fields, vibration, piezocrystal.
Mots-clés : initial conditions
@article{UZERU_2020_54_3_a2,
     author = {M. V. Belubekyan and A. H. Papyan},
     title = {Vibrations of piezoelectric layer of class 6 $mm$ with initial conditions and with rigidly clamped and free edges},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {146--152},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_3_a2/}
}
TY  - JOUR
AU  - M. V. Belubekyan
AU  - A. H. Papyan
TI  - Vibrations of piezoelectric layer of class 6 $mm$ with initial conditions and with rigidly clamped and free edges
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2020
SP  - 146
EP  - 152
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2020_54_3_a2/
LA  - en
ID  - UZERU_2020_54_3_a2
ER  - 
%0 Journal Article
%A M. V. Belubekyan
%A A. H. Papyan
%T Vibrations of piezoelectric layer of class 6 $mm$ with initial conditions and with rigidly clamped and free edges
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2020
%P 146-152
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2020_54_3_a2/
%G en
%F UZERU_2020_54_3_a2
M. V. Belubekyan; A. H. Papyan. Vibrations of piezoelectric layer of class 6 $mm$ with initial conditions and with rigidly clamped and free edges. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 3, pp. 146-152. http://geodesic.mathdoc.fr/item/UZERU_2020_54_3_a2/

[1] D. I. Bardzokas, B. A. Kudryavcev, N. A. Senik, Wave Propagation in Electromagnetoelastic Media, URSS, M., 2003, 336 pp. (in Russian)

[2] M. K. Balakirev, I. Gilinskiy, Waves in Piezoelectric, Nauka, Novosibirsk, 1982, 240 pp. (in Russian)

[3] M. V. Belubekyan, “Shielded Surface Shear Wave in a Piezoactive Half-space of Hexagonal Symmetry”, Problems of the Dynamics of the Interaction of Deformable Surface (Labors VI International Conference, September 21—26), Goris-Stepanakert, 2008, 125–130 (in Russian)

[4] M. V. Belubekyan, M. G. Sargsyan, U. G. Sanoyan, “Controllability with Displacements in Piezoplates with the Help of Electric Field”, Vestnik Engineering Academy of Armenia, 6:2 (2009), 255–261 (in Russian)

[5] S. V. Sargsyan, “Magnetoelastic Vibration in the Infinite Plate with Initial Deflection or Magnetic $i$ mpulse”, Proceedings of YSU, 1983, no. 3, 36–41 (in Russian)

[6] S. V. Sargsyan, “Magnetoelastic Vibration in the Infinite Plate with Initial Deflection”, Mekhanika, YSU Press, Yer., 1982 (in Russian)

[7] M. V. Belubekyan, “Excitation of Elastic Waves by an Electromagnetic Pulse”, Reports AN. Arm. SSR, 20:4 (1980), 219–224 (in Russian)

[8] A. E. Gasparyan, Z. N. Danoyan, “Propagation of Magnetoelastic Waves in a Perfectly Conducting Half-space due to the Action of an Electromagnetic Pulse”, Research on Solid Mechanics, Yer., 1983, 65–72 (in Russian)

[9] A. S. Aetisyan, As. Zh. Khurshudyan, Controllability of Dynamic Systems: the Green's Function Approach, Cambridge Scholars Publishing, Cambridge, 2018 | MR

[10] V. R. Barseghyan, Control of Compound Dynamic Systems and Systems with Multipoint Intermediate Conditions, Nauka, M., 2016, 230 pp. (in Russian)