Some properties of Blaschke type products for the half-plane
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 2, pp. 101-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain balance formulas for the logarithmic means of Blaschke type functions and investigate their boundary values.
Keywords: infinite product, Blaschke, integral mean
Mots-clés : Djrbashian, Fourier transform.
@article{UZERU_2020_54_2_a3,
     author = {G. V. Mikaelyan and V. S. Petrosyan},
     title = {Some properties of {Blaschke} type products for the half-plane},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {101--107},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a3/}
}
TY  - JOUR
AU  - G. V. Mikaelyan
AU  - V. S. Petrosyan
TI  - Some properties of Blaschke type products for the half-plane
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2020
SP  - 101
EP  - 107
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a3/
LA  - en
ID  - UZERU_2020_54_2_a3
ER  - 
%0 Journal Article
%A G. V. Mikaelyan
%A V. S. Petrosyan
%T Some properties of Blaschke type products for the half-plane
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2020
%P 101-107
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a3/
%G en
%F UZERU_2020_54_2_a3
G. V. Mikaelyan; V. S. Petrosyan. Some properties of Blaschke type products for the half-plane. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 2, pp. 101-107. http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a3/

[1] G. V. Mikaelyan, “A Family of Blaschke Type Functions”, Izv. AN Arm. SSR. Math., 25:6 (1990), 582–586 (in Russian) | MR | Zbl

[2] M. M. Djrbashian, “On Canonical Representation of Functions Meromorphic in the Unit Disc”, DAN Arm. SSR, 3:1 (1945), 3–9 (in Russian)

[3] Ch. Horowitz, “Zeros of functions in the Bergman spaces”, Duke Math. J., 41 (1974), 693–710 | DOI | MR | Zbl

[4] B. Korenblum, “Unimodular Möbius-Invariant Contractive Divisors for the Bergman Space”, The Gohberg Anniversary Collection, 2, eds. Dym H., et al., Birkhäuser Verlag, Basel, 1989, 353–358 | DOI | MR

[5] M. Djrbashian, F. Shamoian, “Topics in the Theory of $A^p_\alpha$ Classes”, Teubner Texte zur Mathematik, 105, 1988, 1–199 | MR | Zbl

[6] M. M. Djrbashian, G. V. Mikaelyan, “Construction and Main Properties of a Family of Blashke Type Functions for a Half-plane”, DAN Arm. SSR, 15 (1980), 461–474 (in Russian) | MR

[7] A. M. Djrbashian, “Blaschke Type Functions for the Half-plane”, DAN SSSR, 20 (1979), 1295–1298 (in Russian)

[8] G. V. Mikaelyan, “lized Characteristics for Meromorphic in the Half-plane Functions”, Contemp. Math. Anal., 53 (2018), 147–152 | DOI | MR | Zbl

[9] G. V. Mikaelyan, “Growth of Functions That are Meromorphic in a Half-plane”, Soviet Math., 32 (1988), 115–119 | MR | Zbl

[10] G. V. Mikaelyan, Z. S. Mikaelyan, “Weierstrass and Blaschke Type Functions”, Proceedings of the YSU, Phys. and Math. Sciences, 2010, no. 1, 3–8 | DOI | Zbl

[11] I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Sums, Series and Products, 7$^th$ ed., Academic Press, Amsterdam, 2007 | MR | Zbl

[12] A. M. Jerbashian, Functions of $\alpha$-Bounded Type in the Half-plane, Springer, Boston, 2005, 196 p. pp. | DOI | MR | Zbl

[13] G. V. Mikaelyan, F. V. Hayrapetyan, “Blaschke Products of Given Quantity Index for a Half-plane”, Arm. J. Math., 12:2 (2020), 1–8 | MR