On the localization of shear vibrations in a composite elastic semi-infinite flat waveguide
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 1, pp. 44-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider semi-infinite flat waveguides with different boundary conditions on the planes and on the edges that bound the waveguide. The possibility of localizing shear waves in the vicinity of the junction of neighbouring parts of a semi-infinite flat waveguide is established.
Keywords: shear oscillations, waveguide.
@article{UZERU_2020_54_1_a5,
     author = {M. V. Belubekyan and S. L. Sahakyan},
     title = {On the localization of shear vibrations in a composite elastic semi-infinite flat waveguide},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {44--49},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a5/}
}
TY  - JOUR
AU  - M. V. Belubekyan
AU  - S. L. Sahakyan
TI  - On the localization of shear vibrations in a composite elastic semi-infinite flat waveguide
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2020
SP  - 44
EP  - 49
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a5/
LA  - en
ID  - UZERU_2020_54_1_a5
ER  - 
%0 Journal Article
%A M. V. Belubekyan
%A S. L. Sahakyan
%T On the localization of shear vibrations in a composite elastic semi-infinite flat waveguide
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2020
%P 44-49
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a5/
%G en
%F UZERU_2020_54_1_a5
M. V. Belubekyan; S. L. Sahakyan. On the localization of shear vibrations in a composite elastic semi-infinite flat waveguide. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 1, pp. 44-49. http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a5/

[1] A. E. H. Love, Some Problems of Geodynamics, Cambridge University Press, 1911, 165–178

[2] J. Miklowitz, The Theory of Elastic Waves and Waveguides, North-Holland, 1984, 618 pp. | MR

[3] V. V. Meleshko, A. A. Bondarenko et al., “The Elastic Waveguides: the History and the Present-day”, Mathematical Methods and Physico-Mechanical Fields, 51:2 (2008), 86–104 (in Russian) | MR | Zbl

[4] V. M. Belubekyan, M. V. Belubekyan, “Resonanse and Localized Shear”, Reports of NAS of Armenia, 115:1 (2015), 40–43 (in Russian) | MR

[5] S. A. Nazarov, “Wave and Scattering”, Journal of Applied Mathematics and Mechanics, 81:2 (2017), 129–147 | MR | Zbl

[6] K. B. Ghazaryan, A. A. Papyan, “Resonance and Localized Shear Vibration of $bi$-Material Elastic Resonator”, Proceed. of NAS of Armenia. Mechanics, 70:2 (2017), 52—57 | MR

[7] D. G. Piliposyan, K. B. Ghazaryan, K. B. Ghazaryan, “Shear Waves in Periodic Waveguide with Alternating Boundary Conditions”, Proceed. of NAS of Armenia. Mechanics, 67:3 (2014), 40–48 | MR

[8] M. V. Belubekyan, V. M. Belubekyan, A. Kh. Berberyan, “Localization of Elastic Shear Waves in the Vicinity of the Junction of Plane Waveguides”, The Problems of Dynamics of Interaction in Deformable Media, Proceed. of IX Int. Conf., Goris, Armenia, 76–79 (in Russian) | MR

[9] V. Novatsky, The Elasticity Theory, Mir, M., 1975, 872 pp.

[10] M. V. Belubekyan, “On the Condition of Planar Localized Vibrations Appearance in the Vicinity of the Free Edge of a Thin Rectangular Plate”, Proceedings of the YSU. Physical and Mathematical Sciences, 51:1 (2017), 42–45 | MR | Zbl

[11] M. V. Belubekyan, “On the Love Waves Existence Condition in the Case of Nonhomogeneous Laye”, Proceed. of NAS of Armenia. Mechanics, 44:3 (1991), 7–10 (in Russian) | MR