On the $\left\langle\rho_j,~W_j\right\rangle$ generalized completely monotone functions
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 1, pp. 35-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider sequences $\{\rho_j\}_0^\infty$ $(\rho_0=1,~\rho_j\geq 1),$ $\left\{\alpha_j\right\}_0^\infty \big(\alpha_0=0, \alpha_j=1-(1/\rho_j)\big),$ $\{W_j(x)\}_0^\infty \in W,$ where $$W=\left\{\left\{W_j(x)\right\}_0^\infty \big{/} W_0(x)\equiv 1,~W_j(x)> 0,~W_j^{\prime}(x)\leq 0,~W_j(x)\in C^\infty[0,a] \right\},$$ $C^\infty[0,a]$ is the class of functions of infinitely differentiable. For such sequences we introduce systems of operators $\left\{A_{a,n}^*f\right\}_0^\infty,$ $\left\{\tilde{A}_{a,n}^*f\right\}_0^\infty$ and functions $\left\{U_{a,n}(x)\right\}_0^\infty,$ $\left\{\Phi_n (x,t)\right\}_0^\infty.$ For a certain class of functions a generalization of Taylor–Maclaurin type formulae was obtained. We also introduce the concept of $\langle\rho_j,\ W_j\rangle$ generalized completely monotone functions and establish a theorem on their representation.
Keywords: operators of Rimman–Liouville type, $\left\langle\rho_j,~W_j\right\rangle$ generalized completely monotone functions.
@article{UZERU_2020_54_1_a4,
     author = {B. A. Sahakyan},
     title = {On the $\left\langle\rho_j,~W_j\right\rangle$ generalized completely monotone functions},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {35--43},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a4/}
}
TY  - JOUR
AU  - B. A. Sahakyan
TI  - On the $\left\langle\rho_j,~W_j\right\rangle$ generalized completely monotone functions
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2020
SP  - 35
EP  - 43
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a4/
LA  - en
ID  - UZERU_2020_54_1_a4
ER  - 
%0 Journal Article
%A B. A. Sahakyan
%T On the $\left\langle\rho_j,~W_j\right\rangle$ generalized completely monotone functions
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2020
%P 35-43
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a4/
%G en
%F UZERU_2020_54_1_a4
B. A. Sahakyan. On the $\left\langle\rho_j,~W_j\right\rangle$ generalized completely monotone functions. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 1, pp. 35-43. http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a4/

[1] B. A. Sahakyan, “Differential Operators of Fractional Orders and Associated with $\langle \rho_j\rangle$ Absolutely Monotone Functions”, Izv. AN Arm. SSR. Ser. Matematika, 1974, no. 4, 285–307 (in Russian) | MR

[2] B. A. Sahakyan, “Classes of Taylor–Maclaurin Type Formulae in Complex Domain”, Proceedings of the YSU. Physical and Mathematical Sciences, 2011, no. 2, 3–10 | Zbl

[3] B. A. Sahakyan, “On the Representation of $\left\langle\rho_j,~W_j\right\rangle$ Absolute Monotone Functions. I”, Proceedings of the YSU. Physical and Mathematical Sciences, 2014, no. 1, 26–34 | MR | Zbl

[4] by B. A. Sahakyan, “On the Representation of $\left\langle\rho_j,~W_j\right\rangle$ Absolute Monotone Functions. II”, Proceedings of the YSU. Physical and Mathematical Sciences, 2014, no. 2, 30–38 | MR | Zbl

[5] M. M. Dzhrbashyan, B. A. Sahakyan, “Classes of Formulas and Expansions of Taylor–Maclaurin Type Associated with Differential Operators of Fractional Order”, Izv. AN SSSR. Matematika, 39:1 (1975), 69–122 (in Russian) | MR | Zbl

[6] M. M. Dzhrbashyan, B. A. Sahakyan, “General Classes of Formulae of Taylor–Maclaurin Type”, Izv. AN Arm. SSR. Ser. Matematika, XII:1 (1977), 66–82 (in Russian) | MR

[7] M. M. Dzhrbashyan, B. A. Sahakyan, “On Expansions into Series of Generalized Absolutely Monotone Functions”, Analysis Mat., 7:2 (1981), 85–106 (in Russian) | DOI | MR | Zbl

[8] S. Karlin, W. J. Studden, Tchebycheff Systems with Applications in Analysis and Statistics, v. 9, Interscience Publishers, N.Y., 1966, 381–436 | MR | Zbl

[9] H. V. Badalyan, “Generalization of Taylors Series and Some Questions of the Theory of Abalytic and Quasi-Analytic Functions”, Izv. AN Arm. SSR. Ser. Physmat. Nauki, 1954, no. 3, 3–33 (in Russian) | MR | Zbl

[10] M. M. Dzhrbashyan, Integral Transforms and Representations of Functions in the Complex Domain, Nauka, M., 1966 | MR | Zbl

[11] H. V. Badalyan, “Completely Regular Monotone Functions”, Izv. AN Arm. SSR. Ser. Physmat. Nauki, XV:3 (1962), 3–16 (in Russian) | MR | Zbl

[12] B. A. Sahakyan, “On a Generalized Formula of Taylor–Maclaurin Type on the Generalized Completely Monotone Functions”, Proceedings of the YSU. Physical and Mathematical Sciences, 52:3 (2018), 172–179 | Zbl