Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2020_54_1_a3, author = {A. G. Kamalian and M. I. Karakhanyan}, title = {On solvability of some boundary problem}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {29--34}, publisher = {mathdoc}, volume = {54}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a3/} }
TY - JOUR AU - A. G. Kamalian AU - M. I. Karakhanyan TI - On solvability of some boundary problem JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2020 SP - 29 EP - 34 VL - 54 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a3/ LA - en ID - UZERU_2020_54_1_a3 ER -
%0 Journal Article %A A. G. Kamalian %A M. I. Karakhanyan %T On solvability of some boundary problem %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2020 %P 29-34 %V 54 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a3/ %G en %F UZERU_2020_54_1_a3
A. G. Kamalian; M. I. Karakhanyan. On solvability of some boundary problem. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 1, pp. 29-34. http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a3/
[1] J. L. Lions, E. Magenes, Problemès aux limites non homogènes et applications, v. 1, Dunod, Paris, 1968 | MR | Zbl
[2] G. I. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations, Transl. Math. Monogr., 52, Amer. Math. Soc., Providence, RI, 1981 (in Russian) | MR | Zbl
[3] F. O. Speck, “Mixed Boundary Value Problems of the Type of Sommerfeld's Half-Plane Problem”, Proc. of the Royal Soc. of Edinburg, Section A: Mathematics, 104:3–4 (1986), 261–277 | DOI | MR | Zbl
[4] F. O. Speck, “Sommerfeld Diffraction Problems with First and Second Kind Boundary Conditions”, SIAM J. Math. Anal., 20 (1989), 396–407 | DOI | MR | Zbl
[5] E. Meister, F. O. Speck, “Modern Wiener-Hopf Methods in Diffraction Theory in Ordinary and Partial Differential Equations”, VII Proceedings of the Tents Dundee Conference (1988), Largman, London, 1989, 130–171 | DOI | MR
[6] B. Noble, Methods Based on the Wiener–Hopf Technique for the Solution of Partial Differential Equations, Pergamon Press, London–New York–Paris–Los Angeles, 1958, 246 pp. | MR | Zbl