On solvability of some boundary problem
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 1, pp. 29-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We constract the exact solution of the Dirichlet problem in the Sobolev space for two-dimensional elliptic equation considered on the half-plane.
Keywords: trace of function, Dirichlet problem.
Mots-clés : Sobolev spaces
@article{UZERU_2020_54_1_a3,
     author = {A. G. Kamalian and M. I. Karakhanyan},
     title = {On solvability of some boundary problem},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {29--34},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a3/}
}
TY  - JOUR
AU  - A. G. Kamalian
AU  - M. I. Karakhanyan
TI  - On solvability of some boundary problem
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2020
SP  - 29
EP  - 34
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a3/
LA  - en
ID  - UZERU_2020_54_1_a3
ER  - 
%0 Journal Article
%A A. G. Kamalian
%A M. I. Karakhanyan
%T On solvability of some boundary problem
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2020
%P 29-34
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a3/
%G en
%F UZERU_2020_54_1_a3
A. G. Kamalian; M. I. Karakhanyan. On solvability of some boundary problem. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 1, pp. 29-34. http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a3/

[1] J. L. Lions, E. Magenes, Problemès aux limites non homogènes et applications, v. 1, Dunod, Paris, 1968 | MR | Zbl

[2] G. I. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations, Transl. Math. Monogr., 52, Amer. Math. Soc., Providence, RI, 1981 (in Russian) | MR | Zbl

[3] F. O. Speck, “Mixed Boundary Value Problems of the Type of Sommerfeld's Half-Plane Problem”, Proc. of the Royal Soc. of Edinburg, Section A: Mathematics, 104:3–4 (1986), 261–277 | DOI | MR | Zbl

[4] F. O. Speck, “Sommerfeld Diffraction Problems with First and Second Kind Boundary Conditions”, SIAM J. Math. Anal., 20 (1989), 396–407 | DOI | MR | Zbl

[5] E. Meister, F. O. Speck, “Modern Wiener-Hopf Methods in Diffraction Theory in Ordinary and Partial Differential Equations”, VII Proceedings of the Tents Dundee Conference (1988), Largman, London, 1989, 130–171 | DOI | MR

[6] B. Noble, Methods Based on the Wiener–Hopf Technique for the Solution of Partial Differential Equations, Pergamon Press, London–New York–Paris–Los Angeles, 1958, 246 pp. | MR | Zbl