Conditional moments of the distance distribution two random points in a convex domain in $\mathbf R^2$
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 1, pp. 3-8
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article we define two new integral geometric concepts: conditional moments of the chord length distribution of a convex domain and conditional moments of the distance distribution of two independent uniformly distributed points in a convex domain. We also found a relation between these two concepts.
Keywords:
convex set, conditional distribution, Chord length.
@article{UZERU_2020_54_1_a0,
author = {R. H. Aramyan and V. A. Mnatsakanyan},
title = {Conditional moments of the distance distribution two random points in a convex domain in $\mathbf R^2$},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {3--8},
publisher = {mathdoc},
volume = {54},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a0/}
}
TY - JOUR AU - R. H. Aramyan AU - V. A. Mnatsakanyan TI - Conditional moments of the distance distribution two random points in a convex domain in $\mathbf R^2$ JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2020 SP - 3 EP - 8 VL - 54 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a0/ LA - en ID - UZERU_2020_54_1_a0 ER -
%0 Journal Article %A R. H. Aramyan %A V. A. Mnatsakanyan %T Conditional moments of the distance distribution two random points in a convex domain in $\mathbf R^2$ %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2020 %P 3-8 %V 54 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a0/ %G en %F UZERU_2020_54_1_a0
R. H. Aramyan; V. A. Mnatsakanyan. Conditional moments of the distance distribution two random points in a convex domain in $\mathbf R^2$. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 1, pp. 3-8. http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a0/