Conditional moments of the distance distribution two random points in a convex domain in $\mathbf R^2$
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 1, pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we define two new integral geometric concepts: conditional moments of the chord length distribution of a convex domain and conditional moments of the distance distribution of two independent uniformly distributed points in a convex domain. We also found a relation between these two concepts.
Keywords: convex set, conditional distribution, Chord length.
@article{UZERU_2020_54_1_a0,
     author = {R. H. Aramyan and V. A. Mnatsakanyan},
     title = {Conditional moments of the distance  distribution  two random points in a convex domain in $\mathbf R^2$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a0/}
}
TY  - JOUR
AU  - R. H. Aramyan
AU  - V. A. Mnatsakanyan
TI  - Conditional moments of the distance  distribution  two random points in a convex domain in $\mathbf R^2$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2020
SP  - 3
EP  - 8
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a0/
LA  - en
ID  - UZERU_2020_54_1_a0
ER  - 
%0 Journal Article
%A R. H. Aramyan
%A V. A. Mnatsakanyan
%T Conditional moments of the distance  distribution  two random points in a convex domain in $\mathbf R^2$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2020
%P 3-8
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a0/
%G en
%F UZERU_2020_54_1_a0
R. H. Aramyan; V. A. Mnatsakanyan. Conditional moments of the distance  distribution  two random points in a convex domain in $\mathbf R^2$. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 1, pp. 3-8. http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a0/

[1] R. J. Gardner, Biophysical Chemistry, 2nd ed., Cambridge University Press, Cambridge,, 2006 | MR

[2] L. A. Santalo, Integeral Geometry and Geometric Probability, Encyclopedia of Mathematics and its Applications, Addison-Wesley, 1976 | MR

[3] R. V. Ambartzumian, “Combinatorial integral geometry, metric and zonoids”, Acta Appl. Math., 9 (1987), 3–27 | DOI | MR | Zbl

[4] N. G. Aharonyan, H. S. Harutyunyan, “Random Copy of a Segment within a Convex Domain”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 45:6 (2010) | MR | Zbl

[5] N. G. Aharonyan, “Distribution of the Distance between Two Random Points in a Convex Set”, Russian Journal of Mathematical Research. Series A, 1 (2015), 1–5