Quasi-boolean power of algebras and idempotent algebras
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 3, pp. 170-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

In In this paper we provide a necessity condition for embedding of the binary algebra into the quasi-boolean power of a rectangular algebra. It is also proved that every idempotent and hyperassociative algebra via the weak bihomomorphism maps in an idempotent and commutative algebra.
Keywords: quasi-boolean power, idempotent algebra, complete lattice, commutative algebra, algebra with transitive commutativity property.
Mots-clés : bihomomorphism
@article{UZERU_2019_53_3_a4,
     author = {M. A. Yolchyan},
     title = {Quasi-boolean power of algebras and idempotent algebras},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {170--176},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a4/}
}
TY  - JOUR
AU  - M. A. Yolchyan
TI  - Quasi-boolean power of algebras and idempotent algebras
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2019
SP  - 170
EP  - 176
VL  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a4/
LA  - en
ID  - UZERU_2019_53_3_a4
ER  - 
%0 Journal Article
%A M. A. Yolchyan
%T Quasi-boolean power of algebras and idempotent algebras
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2019
%P 170-176
%V 53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a4/
%G en
%F UZERU_2019_53_3_a4
M. A. Yolchyan. Quasi-boolean power of algebras and idempotent algebras. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 3, pp. 170-176. http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a4/

[1] A. G. Pinus, “Boolean Constructions in Universal Algebra”, Uspekhi Mat. Nauk, 47:4 (286) (1992), 145–180 (in Russian) | MR | Zbl

[2] Yu. M. Movsisyan, Introduction of The Theory of Algebras with Hyperidentities, Yerevan State University Press, Yerevan, 1986 (in Russian) | MR

[3] A. Church, Introduction to Mathematical Logic, Princeton University Press, Princeton, NJ, 1956 | MR | Zbl

[4] A. I. Mal'tsev, “Some Questions of the Theory of Classes of Models”, Proceedings of the IVth All-Union Mathematical Congress, v. I, 1963, 169–198 (in Russian) | Zbl

[5] A. I. Mal'tsev, Algebraic Systems, Springer-Verlag, Berlin–Heidelberg–New York, 1973 | MR | Zbl

[6] Yu. M. Movsisyan, Hyperidentities and Hypervarieties in Algebras, Yerevan State University Press, 1990 (in Russian) | MR

[7] Yu. M. Movsisyan, “Hyperidentitties in Algebras and Varieties”, Uspekhi Mat. Nauk., 53:1 (1998), 57–108 (in Russian) | DOI | MR | Zbl

[8] Yu. M. Movsisyan, “Hyperidentities and Related Concepts. I”, Arm. J. Math., 2 (2017), 146–222 | MR | Zbl

[9] Yu. M. Movsisyan, “Hyperidentities and Related Concepts. II”, Arm. J. Math., 4 (2018), 1–85 | MR

[10] L. A. Skornyakov (ed.), General Algebra, Nauka, M., 1991 (in Russian) | MR | Zbl

[11] B. I. Plotkin, Automorphism Groups of Algebraic Systems, Nauka, M., 1966 (in Russian) | MR

[12] Yu. M. Movsisyan, “Hyperidentities and Hypervarieties”, Sci. Math. Jap., 54:3 (2001), 595–640 | MR | Zbl

[13] Yu. M. Movsisyan, M. A Yolchyan, “On Idempotent and Hyperassociative Structures”, Lobachevskii J. Math., 40:8 (2019), 1113–1121 | DOI | MR | Zbl