Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2019_53_3_a2, author = {L. S. Simonyan}, title = {The representation of functions by {Walsh} double system in weighted $L_{\mu}^{^{p}}[0,1)^{2}$-spaces}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {156--162}, publisher = {mathdoc}, volume = {53}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a2/} }
TY - JOUR AU - L. S. Simonyan TI - The representation of functions by Walsh double system in weighted $L_{\mu}^{^{p}}[0,1)^{2}$-spaces JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2019 SP - 156 EP - 162 VL - 53 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a2/ LA - en ID - UZERU_2019_53_3_a2 ER -
%0 Journal Article %A L. S. Simonyan %T The representation of functions by Walsh double system in weighted $L_{\mu}^{^{p}}[0,1)^{2}$-spaces %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2019 %P 156-162 %V 53 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a2/ %G en %F UZERU_2019_53_3_a2
L. S. Simonyan. The representation of functions by Walsh double system in weighted $L_{\mu}^{^{p}}[0,1)^{2}$-spaces. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 3, pp. 156-162. http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a2/
[1] F. G. Arutunyan, “On the Representation of Functions by Multiple Series”, Dokl. AN Arm. SSR, 64 (1976), 72–76 | MR
[2] L. Carleson, “On Convergence and Growth of Partial Sumas of Fourier Series”, Acta Math., 116:1–2 (1966), 135–157 | DOI | MR | Zbl
[3] C. Fefferman, “On the Divergence of Multiple Fourier Series”, Bull. Amer. Math. Soc., 77:2 (1971), 191–195 | DOI | MR | Zbl
[4] L. N. Galoyan, M. G. Grigoryan, A. Kh. Kobelyan, “Convergence of Fourier Series in Classical Systems”, Mat. Sb., 206:7 (2015), 55–94 | DOI | MR | Zbl
[5] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Walsh Series and Transforms. Theory and Applications, Nauka, M., 1987 (in Russian) | DOI | MR | Zbl
[6] M. G. Grigoryan, “On the Representation of Functions by Orthogonal Series in Weighted $L^{p}$ Spaces”, Studia Math., 134:3 (1999), 211–237 | DOI | MR
[7] M. G. Grigoryan, Series in the Classical Systems, LAP LAMBERT Academic Publishing, Saarbruken, 2017 (in Russian)
[8] M. G. Grigoryan, S. A. Episkoposyan, “On Universal Trigonometric Series in Weighted Spaces $L_{\mu}^{1}[0; 2\pi]$”, East Journal on Approximations, 5:4 (1999), 483–492 | MR
[9] A. N. Kolmogorov, “Sur les Fonctions Harmoniques Conjuguées et les Séries de Fourier”, Fund. Math., 7 (1925), 23–28 | DOI
[10] M. Riesz, “Sur les fonctions conjuguées”, Math. Zeit., 27 (1927), 218–244 | DOI | MR | Zbl
[11] A. A. Talalyan, “On the Universal Series with Respect to Rearrangements”, Izv. Akad. Nauk SSSR, Ser. Mat., 24 (1960), 567–604 | MR
[12] J. L. Walsh, “A Closed Set of Orthogonal Functions”, Amer. J. Math., 55 (1923), 5–24 | DOI | MR | Zbl
[13] by R. E. A. C. Paley “A Remarkable Series of Orthogonal Functions”, Proc. London Math. Soc., 34 (1932), 241–279 | DOI | MR | Zbl
[14] D. C. Harris, “Almost Everywhere Divergence of Multiple Walsh–Fourier Series”, American Math. Soc., 101:4 (1987) | DOI | MR | Zbl
[15] C. Fefferman, “The Multiple Problem for the Ball”, Ann. Math., 94:2 (1971), 330–336 | DOI | MR | Zbl
[16] Soviet Math. Dokl., 39 (1989) | MR | Zbl
[17] M. G. Grigoryan, T. M. Grigoryan, L. S. Simonyan, “Convergence of Fourier-Walsh Double Series in Weighted $L_{\mu}^{p}[0;1)^{2}$”, Springer Proceedings in Mathematics and Statistics, v. 2, Springer Nature Switzerland AG, 2019, 109–137 | DOI | MR