The representation of functions by Walsh double system in weighted $L_{\mu}^{^{p}}[0,1)^{2}$-spaces
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 3, pp. 156-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we construct a weighted space $L_{\mu}^p,$ $p\geq 1,$ in which functions with the norm of that space are presented by Walsh double series, which coefficients are monotone in all ways.
Keywords: weighted space, Walsh double system, weight function.
@article{UZERU_2019_53_3_a2,
     author = {L. S. Simonyan},
     title = {The representation of functions by {Walsh} double system in weighted $L_{\mu}^{^{p}}[0,1)^{2}$-spaces},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {156--162},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a2/}
}
TY  - JOUR
AU  - L. S. Simonyan
TI  - The representation of functions by Walsh double system in weighted $L_{\mu}^{^{p}}[0,1)^{2}$-spaces
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2019
SP  - 156
EP  - 162
VL  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a2/
LA  - en
ID  - UZERU_2019_53_3_a2
ER  - 
%0 Journal Article
%A L. S. Simonyan
%T The representation of functions by Walsh double system in weighted $L_{\mu}^{^{p}}[0,1)^{2}$-spaces
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2019
%P 156-162
%V 53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a2/
%G en
%F UZERU_2019_53_3_a2
L. S. Simonyan. The representation of functions by Walsh double system in weighted $L_{\mu}^{^{p}}[0,1)^{2}$-spaces. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 3, pp. 156-162. http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a2/

[1] F. G. Arutunyan, “On the Representation of Functions by Multiple Series”, Dokl. AN Arm. SSR, 64 (1976), 72–76 | MR

[2] L. Carleson, “On Convergence and Growth of Partial Sumas of Fourier Series”, Acta Math., 116:1–2 (1966), 135–157 | DOI | MR | Zbl

[3] C. Fefferman, “On the Divergence of Multiple Fourier Series”, Bull. Amer. Math. Soc., 77:2 (1971), 191–195 | DOI | MR | Zbl

[4] L. N. Galoyan, M. G. Grigoryan, A. Kh. Kobelyan, “Convergence of Fourier Series in Classical Systems”, Mat. Sb., 206:7 (2015), 55–94 | DOI | MR | Zbl

[5] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Walsh Series and Transforms. Theory and Applications, Nauka, M., 1987 (in Russian) | DOI | MR | Zbl

[6] M. G. Grigoryan, “On the Representation of Functions by Orthogonal Series in Weighted $L^{p}$ Spaces”, Studia Math., 134:3 (1999), 211–237 | DOI | MR

[7] M. G. Grigoryan, Series in the Classical Systems, LAP LAMBERT Academic Publishing, Saarbruken, 2017 (in Russian)

[8] M. G. Grigoryan, S. A. Episkoposyan, “On Universal Trigonometric Series in Weighted Spaces $L_{\mu}^{1}[0; 2\pi]$”, East Journal on Approximations, 5:4 (1999), 483–492 | MR

[9] A. N. Kolmogorov, “Sur les Fonctions Harmoniques Conjuguées et les Séries de Fourier”, Fund. Math., 7 (1925), 23–28 | DOI

[10] M. Riesz, “Sur les fonctions conjuguées”, Math. Zeit., 27 (1927), 218–244 | DOI | MR | Zbl

[11] A. A. Talalyan, “On the Universal Series with Respect to Rearrangements”, Izv. Akad. Nauk SSSR, Ser. Mat., 24 (1960), 567–604 | MR

[12] J. L. Walsh, “A Closed Set of Orthogonal Functions”, Amer. J. Math., 55 (1923), 5–24 | DOI | MR | Zbl

[13] by R. E. A. C. Paley “A Remarkable Series of Orthogonal Functions”, Proc. London Math. Soc., 34 (1932), 241–279 | DOI | MR | Zbl

[14] D. C. Harris, “Almost Everywhere Divergence of Multiple Walsh–Fourier Series”, American Math. Soc., 101:4 (1987) | DOI | MR | Zbl

[15] C. Fefferman, “The Multiple Problem for the Ball”, Ann. Math., 94:2 (1971), 330–336 | DOI | MR | Zbl

[16] Soviet Math. Dokl., 39 (1989) | MR | Zbl

[17] M. G. Grigoryan, T. M. Grigoryan, L. S. Simonyan, “Convergence of Fourier-Walsh Double Series in Weighted $L_{\mu}^{p}[0;1)^{2}$”, Springer Proceedings in Mathematics and Statistics, v. 2, Springer Nature Switzerland AG, 2019, 109–137 | DOI | MR