On a linearized coverings of a cubic homogeneous equation over a finite field. Lower bounds
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 2, pp. 119-126

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain lower bounds for the complexity of linearized coverings for some sets of special solutions of the equation $x_1 x_2 x_3+ x_2 x_3 x_4+\cdots+ x_{3n} x_1 x_2+x_1 x_3 x_5+x_4 x_6 x_8+\cdots+x_{3n-2} x_{3n}x_2=b$ over an arbitrary finite field.
Keywords: Linear algebra, finite field, coset of linear subspace, linearized covering.
@article{UZERU_2019_53_2_a5,
     author = {V. P. Gabrielyan},
     title = {On a linearized coverings of a cubic homogeneous equation over a finite field. {Lower} bounds},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {119--126},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a5/}
}
TY  - JOUR
AU  - V. P. Gabrielyan
TI  - On a linearized coverings of a cubic homogeneous equation over a finite field. Lower bounds
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2019
SP  - 119
EP  - 126
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a5/
LA  - en
ID  - UZERU_2019_53_2_a5
ER  - 
%0 Journal Article
%A V. P. Gabrielyan
%T On a linearized coverings of a cubic homogeneous equation over a finite field. Lower bounds
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2019
%P 119-126
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a5/
%G en
%F UZERU_2019_53_2_a5
V. P. Gabrielyan. On a linearized coverings of a cubic homogeneous equation over a finite field. Lower bounds. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 2, pp. 119-126. http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a5/