On a linearized coverings of a cubic homogeneous equation over a finite field. Lower bounds
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 2, pp. 119-126
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain lower bounds for the complexity of linearized coverings for some sets of special solutions of the equation $x_1 x_2 x_3+ x_2 x_3 x_4+\cdots+ x_{3n} x_1 x_2+x_1 x_3 x_5+x_4 x_6 x_8+\cdots+x_{3n-2} x_{3n}x_2=b$ over an arbitrary finite field.
Keywords:
Linear algebra, finite field, coset of linear subspace, linearized covering.
@article{UZERU_2019_53_2_a5,
author = {V. P. Gabrielyan},
title = {On a linearized coverings of a cubic homogeneous equation over a finite field. {Lower} bounds},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {119--126},
publisher = {mathdoc},
volume = {53},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a5/}
}
TY - JOUR AU - V. P. Gabrielyan TI - On a linearized coverings of a cubic homogeneous equation over a finite field. Lower bounds JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2019 SP - 119 EP - 126 VL - 53 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a5/ LA - en ID - UZERU_2019_53_2_a5 ER -
%0 Journal Article %A V. P. Gabrielyan %T On a linearized coverings of a cubic homogeneous equation over a finite field. Lower bounds %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2019 %P 119-126 %V 53 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a5/ %G en %F UZERU_2019_53_2_a5
V. P. Gabrielyan. On a linearized coverings of a cubic homogeneous equation over a finite field. Lower bounds. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 2, pp. 119-126. http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a5/