Automorphisms of free Burnside groups of period 3
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 1, pp. 13-16
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that any automorphism of the free Burnside groups $B(3)$ of period 3 and an arbitrary rank induced by an automorphsim of the free group of the same rank.
Keywords:
finitary lifting property, free Burnside group.
Mots-clés : Automorphism
Mots-clés : Automorphism
@article{UZERU_2019_53_1_a1,
author = {H. A. Grigorian},
title = {Automorphisms of free {Burnside} groups of period 3},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {13--16},
year = {2019},
volume = {53},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2019_53_1_a1/}
}
TY - JOUR AU - H. A. Grigorian TI - Automorphisms of free Burnside groups of period 3 JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2019 SP - 13 EP - 16 VL - 53 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZERU_2019_53_1_a1/ LA - en ID - UZERU_2019_53_1_a1 ER -
H. A. Grigorian. Automorphisms of free Burnside groups of period 3. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 1, pp. 13-16. http://geodesic.mathdoc.fr/item/UZERU_2019_53_1_a1/
[1] R. M. Bryant, “Automorphisms of Relatively Free Nilpotent Groups of Infinite Rank”, J. Algebra, 121 (1989), 388–398 | DOI | MR
[2] M. Hall, The Theory of Groups, Macmillan, New York, 1959, 172 pp. | MR | Zbl
[3] R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Ergeb. Math. Grenzgeb., 89, Springer-Verlag, Berlin-New York, 1977 | DOI | MR | Zbl
[4] W. Magnus, A. Karrass, D. Soliterr, Combinatorial Group Theory. Presentations of Groups in Terms of Generators and Relations, Intersci. Publ., New York, 1966 | MR | Zbl