On main canonical notion of $\delta$-reduction
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 3, pp. 191-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the main canonical notion of $\delta$-reduction is considered. Typed $\lambda$-terms use variables of any order and constants of order $\leq1$, where constants of order $1$ are strongly computable, monotonic functions with indeterminate values of arguments. The canonical notion of $\delta$-reduction is the notion of $\delta$-reduction that is used in the implementation of functional programming languages. For main canonical notion of $\delta$-reduction the uniqueness of $\beta\delta$-normal form of typed $\lambda$-terms is shown.
Keywords: main canonical notion,$\delta$-reduction, $\beta\delta$-reduction, normal form.
@article{UZERU_2018_52_3_a5,
     author = {D. A. Grigoryan},
     title = {On main canonical notion of  $\delta$-reduction},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {191--199},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a5/}
}
TY  - JOUR
AU  - D. A. Grigoryan
TI  - On main canonical notion of  $\delta$-reduction
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2018
SP  - 191
EP  - 199
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a5/
LA  - en
ID  - UZERU_2018_52_3_a5
ER  - 
%0 Journal Article
%A D. A. Grigoryan
%T On main canonical notion of  $\delta$-reduction
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2018
%P 191-199
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a5/
%G en
%F UZERU_2018_52_3_a5
D. A. Grigoryan. On main canonical notion of  $\delta$-reduction. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 3, pp. 191-199. http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a5/

[1] S. A. Nigiyan, “On Non-classical Theory of Computability”, Proceedings of the YSU. Physical and Mathematical Sciences, 2015, no. 1, 52–60 | Zbl

[2] S. A. Nigiyan, T. V. Khondkaryan, “On Canonical Notion of $\delta$-Reduction and on Translation of Typed l-Terms into Untyped $\lambda$-Terms”, Proceedings of the YSU. Physical and Mathematical Sciences, 51:1 (2017), 46—52 | Zbl

[3] L. E. Budaghyan, “Formalizing the Notion of $\delta$-Reduction in Monotonic Models of Typed $\lambda$-Calculus”, Algebra Geom. Appl. Semin. Proc., 2 (2002), 48—57 | MR | Zbl