On main canonical notion of $\delta$-reduction
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 3, pp. 191-199
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper the main canonical notion of $\delta$-reduction is considered. Typed $\lambda$-terms use variables of any order and constants of order $\leq1$, where constants of order $1$ are strongly computable, monotonic functions with indeterminate values of arguments. The canonical notion of $\delta$-reduction is the notion of $\delta$-reduction that is used in the implementation of functional programming languages. For main canonical notion of $\delta$-reduction the uniqueness of $\beta\delta$-normal form of typed $\lambda$-terms is shown.
Keywords:
main canonical notion,$\delta$-reduction, $\beta\delta$-reduction, normal form.
@article{UZERU_2018_52_3_a5,
author = {D. A. Grigoryan},
title = {On main canonical notion of $\delta$-reduction},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {191--199},
year = {2018},
volume = {52},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a5/}
}
TY - JOUR AU - D. A. Grigoryan TI - On main canonical notion of $\delta$-reduction JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2018 SP - 191 EP - 199 VL - 52 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a5/ LA - en ID - UZERU_2018_52_3_a5 ER -
D. A. Grigoryan. On main canonical notion of $\delta$-reduction. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 3, pp. 191-199. http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a5/
[1] S. A. Nigiyan, “On Non-classical Theory of Computability”, Proceedings of the YSU. Physical and Mathematical Sciences, 2015, no. 1, 52–60 | Zbl
[2] S. A. Nigiyan, T. V. Khondkaryan, “On Canonical Notion of $\delta$-Reduction and on Translation of Typed l-Terms into Untyped $\lambda$-Terms”, Proceedings of the YSU. Physical and Mathematical Sciences, 51:1 (2017), 46—52 | Zbl
[3] L. E. Budaghyan, “Formalizing the Notion of $\delta$-Reduction in Monotonic Models of Typed $\lambda$-Calculus”, Algebra Geom. Appl. Semin. Proc., 2 (2002), 48—57 | MR | Zbl