On a generalized formula of Taylor–Maclaurin type on the generalized completely monotone functions
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 3, pp. 172-179
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper Taylor–Maclaurin type formulas for some classes of functions are obtained. The main result of this study introduces an idea of the generalized classes of $\langle\rho_j\rangle$ completely monotone function. Under the various conditions the terms of their representation are obtained and some related theorems are proved.
Keywords:
Riemann–Liouville type operators, $\langle\rho_j\rangle$ completely monotone functions.
@article{UZERU_2018_52_3_a3,
author = {B. A. Sahakyan},
title = {On a generalized formula of {Taylor{\textendash}Maclaurin} type on the generalized completely monotone functions},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {172--179},
publisher = {mathdoc},
volume = {52},
number = {3},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a3/}
}
TY - JOUR AU - B. A. Sahakyan TI - On a generalized formula of Taylor–Maclaurin type on the generalized completely monotone functions JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2018 SP - 172 EP - 179 VL - 52 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a3/ LA - en ID - UZERU_2018_52_3_a3 ER -
%0 Journal Article %A B. A. Sahakyan %T On a generalized formula of Taylor–Maclaurin type on the generalized completely monotone functions %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2018 %P 172-179 %V 52 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a3/ %G en %F UZERU_2018_52_3_a3
B. A. Sahakyan. On a generalized formula of Taylor–Maclaurin type on the generalized completely monotone functions. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 3, pp. 172-179. http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a3/