On a generalized formula of Taylor–Maclaurin type on the generalized completely monotone functions
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 3, pp. 172-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper Taylor–Maclaurin type formulas for some classes of functions are obtained. The main result of this study introduces an idea of the generalized classes of $\langle\rho_j\rangle$ completely monotone function. Under the various conditions the terms of their representation are obtained and some related theorems are proved.
Keywords: Riemann–Liouville type operators, $\langle\rho_j\rangle$ completely monotone functions.
@article{UZERU_2018_52_3_a3,
     author = {B. A. Sahakyan},
     title = {On a generalized formula of {Taylor{\textendash}Maclaurin} type on the generalized completely monotone functions},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {172--179},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a3/}
}
TY  - JOUR
AU  - B. A. Sahakyan
TI  - On a generalized formula of Taylor–Maclaurin type on the generalized completely monotone functions
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2018
SP  - 172
EP  - 179
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a3/
LA  - en
ID  - UZERU_2018_52_3_a3
ER  - 
%0 Journal Article
%A B. A. Sahakyan
%T On a generalized formula of Taylor–Maclaurin type on the generalized completely monotone functions
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2018
%P 172-179
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a3/
%G en
%F UZERU_2018_52_3_a3
B. A. Sahakyan. On a generalized formula of Taylor–Maclaurin type on the generalized completely monotone functions. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 3, pp. 172-179. http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a3/

[1] M. M. Dzhrbashyan, B. A. Sahakyan, “Classes of Formulas and Expansions of Taylor–Maclaurin Type Associated with Differential Operators of Fractional Order”, Izv. AN SSSR. Matematika, 39:1 (1975), 69–122 | MR | Zbl

[2] B. A. Sahakyan, “Differential Operators of Fractional Orders and Associated with $\langle \rho_j\rangle$ Absolutely Monotone Functions”, Izv. AN Arm. SSR. Ser. Matematika, 1974, no. 4, 285–307 | MR

[3] M. M. Dzhrbashyan, B. A. Sahakyan, “General Classes of Formulae of Taylor–Maclaurin Type”, Izv. AN Arm. SSR. Ser. Matematika, XII:1 (1977), 66–82 | MR

[4] M. M. Dzhrbashyan, B. A. Sahakyan, “On Expansions into Series of Generalized Absolutely Monotone Functions”, Analysis Mat., 7:2 (1981), 85–106 | DOI | MR | Zbl

[5] B. A. Sahakyan, “Classes of Taylor–Maclaurin Type Formulae in Complex Domain”, Proceedings of the YSU. Physical and Mathematical Sciences, 2011, no. 2, 3–10 | Zbl

[6] B. A. Sahakyan, “General Classes of Taylor–Maclaurin Type Formulas in Complex Domain”, Proceedings of the YSU. Physical and Mathematical Sciences, 2012, no. 1, 20–26 | Zbl

[7] B. A. Sahakyan, “On the Representation of $\langle \rho_j, W_j\rangle$ Absolute Monotone Functions. I”, Proceedings of the YSU. Physical and Mathematical Sciences, 2014, no. 1, 26–34 | MR | Zbl

[8] by B. A. Sahakyan, “On the Representation of $\langle \rho_j, W_j\rangle$ Absolute Monotone Functions. II”, Proceedings of the YSU. Physical and Mathematical Sciences, 2014, no. 2, 30–38 | MR | Zbl

[9] H. V. Badalyan, “Completely Regular Monotone Functions”, Izv. AN Arm. SSR. Ser. Physmat. Nauki, XV:3 (1962), 3–16 | MR | Zbl

[10] M. M. Dzhrbashyan, Integral Transforms and Representations of Functions in the Complex Domain, Nauka, M., 1966 | MR

[11] M. M. Dzhrbashyan, A. B. Nersesyan, “On the Structure of Certain Special Biorthogonal Systems”, Izv. AN Arm. SSR. Physmat. Nauki, 12:5 (1959), 17–42 | MR