On a generalized formula of Taylor–Maclaurin type on the generalized completely monotone functions
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 3, pp. 172-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper Taylor–Maclaurin type formulas for some classes of functions are obtained. The main result of this study introduces an idea of the generalized classes of $\langle\rho_j\rangle$ completely monotone function. Under the various conditions the terms of their representation are obtained and some related theorems are proved.
Keywords: Riemann–Liouville type operators, $\langle\rho_j\rangle$ completely monotone functions.
@article{UZERU_2018_52_3_a3,
     author = {B. A. Sahakyan},
     title = {On a generalized formula of {Taylor{\textendash}Maclaurin} type on the generalized completely monotone functions},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {172--179},
     year = {2018},
     volume = {52},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a3/}
}
TY  - JOUR
AU  - B. A. Sahakyan
TI  - On a generalized formula of Taylor–Maclaurin type on the generalized completely monotone functions
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2018
SP  - 172
EP  - 179
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a3/
LA  - en
ID  - UZERU_2018_52_3_a3
ER  - 
%0 Journal Article
%A B. A. Sahakyan
%T On a generalized formula of Taylor–Maclaurin type on the generalized completely monotone functions
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2018
%P 172-179
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a3/
%G en
%F UZERU_2018_52_3_a3
B. A. Sahakyan. On a generalized formula of Taylor–Maclaurin type on the generalized completely monotone functions. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 3, pp. 172-179. http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a3/

[1] M. M. Dzhrbashyan, B. A. Sahakyan, “Classes of Formulas and Expansions of Taylor–Maclaurin Type Associated with Differential Operators of Fractional Order”, Izv. AN SSSR. Matematika, 39:1 (1975), 69–122 | MR | Zbl

[2] B. A. Sahakyan, “Differential Operators of Fractional Orders and Associated with $\langle \rho_j\rangle$ Absolutely Monotone Functions”, Izv. AN Arm. SSR. Ser. Matematika, 1974, no. 4, 285–307 | MR

[3] M. M. Dzhrbashyan, B. A. Sahakyan, “General Classes of Formulae of Taylor–Maclaurin Type”, Izv. AN Arm. SSR. Ser. Matematika, XII:1 (1977), 66–82 | MR

[4] M. M. Dzhrbashyan, B. A. Sahakyan, “On Expansions into Series of Generalized Absolutely Monotone Functions”, Analysis Mat., 7:2 (1981), 85–106 | DOI | MR | Zbl

[5] B. A. Sahakyan, “Classes of Taylor–Maclaurin Type Formulae in Complex Domain”, Proceedings of the YSU. Physical and Mathematical Sciences, 2011, no. 2, 3–10 | Zbl

[6] B. A. Sahakyan, “General Classes of Taylor–Maclaurin Type Formulas in Complex Domain”, Proceedings of the YSU. Physical and Mathematical Sciences, 2012, no. 1, 20–26 | Zbl

[7] B. A. Sahakyan, “On the Representation of $\langle \rho_j, W_j\rangle$ Absolute Monotone Functions. I”, Proceedings of the YSU. Physical and Mathematical Sciences, 2014, no. 1, 26–34 | MR | Zbl

[8] by B. A. Sahakyan, “On the Representation of $\langle \rho_j, W_j\rangle$ Absolute Monotone Functions. II”, Proceedings of the YSU. Physical and Mathematical Sciences, 2014, no. 2, 30–38 | MR | Zbl

[9] H. V. Badalyan, “Completely Regular Monotone Functions”, Izv. AN Arm. SSR. Ser. Physmat. Nauki, XV:3 (1962), 3–16 | MR | Zbl

[10] M. M. Dzhrbashyan, Integral Transforms and Representations of Functions in the Complex Domain, Nauka, M., 1966 | MR

[11] M. M. Dzhrbashyan, A. B. Nersesyan, “On the Structure of Certain Special Biorthogonal Systems”, Izv. AN Arm. SSR. Physmat. Nauki, 12:5 (1959), 17–42 | MR