Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2018_52_3_a1, author = {A. G. Kamalian and M. I. Karakhanyan}, title = {On algebraic equation with coefficients from the $\beta $-uniform algebra $C_\beta(\Omega)$}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {161--165}, publisher = {mathdoc}, volume = {52}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a1/} }
TY - JOUR AU - A. G. Kamalian AU - M. I. Karakhanyan TI - On algebraic equation with coefficients from the $\beta $-uniform algebra $C_\beta(\Omega)$ JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2018 SP - 161 EP - 165 VL - 52 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a1/ LA - en ID - UZERU_2018_52_3_a1 ER -
%0 Journal Article %A A. G. Kamalian %A M. I. Karakhanyan %T On algebraic equation with coefficients from the $\beta $-uniform algebra $C_\beta(\Omega)$ %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2018 %P 161-165 %V 52 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a1/ %G en %F UZERU_2018_52_3_a1
A. G. Kamalian; M. I. Karakhanyan. On algebraic equation with coefficients from the $\beta $-uniform algebra $C_\beta(\Omega)$. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 3, pp. 161-165. http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a1/
[1] R. C. Cauntryman, “On the Characterization of Compact Hausdorff Space X for which C(X) is Algebraically Closed”, Pacif. J. Math., 20:3 (1967), 433—448 | DOI | MR
[2] E.A. Gorin, M.I. Karakhanyaned Compacts, “Some Characteristics Properties of the Algebra of All Continnous Functions on Locally Connect”, Izv. Acad. Nauk Arm. SSR. Ser. Math., 11:3 (1976), 237–255 | MR | Zbl
[3] E. A. Gorin, M. I. Karakhanyan, “Some Characteristics Properties of the Algebra of All Continnous Functions on Locally Connected Compacts”, Izv. Acad. Nauk Arm. SSR. Ser. Math., 11:3 (1976), 237—255 (in Russian) | MR | Zbl
[4] R. Gr. Buck, “Bounded Continuous Functions on a Locally Compact Space”, Michigan Math. J., 5:2 (1978), 95—104 | MR
[5] R. A. Giles, “Generalization of the Strict Topology”, Transaction of the American Math. Soc., 161:2 (1974), 467—474 | MR
[6] M. I. Karakhanyan, T. L. Khorkova, “On a Characteristic Property of the Algebra Cb (W)”, Sibirsk. Math. J., 50:1 (2009), 96—106 (in Russian) | DOI | MR | Zbl
[7] H. H. Shaefer, Topological Vector Space, Academic Press, N.-Y., 1966 | MR
[8] M. I. Karakhanyan, “On the First Cohomology Group for a b-Uniform Algebra with Coefficients”, Z. Armenian Math. Union, Annual Session 2015, Dedicated to 100 Anniversary of Haik Badalyan, Yer., 2015, 59—60 (in Russian)
[9] E. A. Gorin, V. Ja. Lin, “Algebraic Equations with Continuous Coefficients and Some Questions Related to the Algebraic Theory of Braid”, Math. Sborn (USSR), 78(120):4 (1969), 579–610 | MR | Zbl
[10] S. T. Hu, Homotopy Theory, Academic Press, N.-Y., 1959 | MR
[11] T. W. Gamelin, Uniform Algebras, Prenti Ce-Hall Inc., Englewood Cliffs., N.-Y., 1969 | MR | Zbl
[12] L. D. Fadeev, “Inverse Problems of Quantum Scattering Theory”, The Results of Science and Technology, Series of Modern Problems of Mathematics, 3 (1974), 93–180 | MR | Zbl
[13] V. A. Marchenko, Operators of Sturm-Liouville and Their Applications, Naukova Dumka, Kiev, 1977 | MR