On algebraic equation with coefficients from the $\beta $-uniform algebra $C_\beta(\Omega)$
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 3, pp. 161-165.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work the question of algebraic closeness of $\beta$-uniform algebra $A(\Omega)$ defined on locally compact space $\Omega$ is investigated.
Keywords: $\beta$-uniformly algebras, complete regular space, discontinuous multiplicative functional.
@article{UZERU_2018_52_3_a1,
     author = {A. G. Kamalian and M. I. Karakhanyan},
     title = {On algebraic equation with coefficients from the $\beta $-uniform algebra $C_\beta(\Omega)$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {161--165},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a1/}
}
TY  - JOUR
AU  - A. G. Kamalian
AU  - M. I. Karakhanyan
TI  - On algebraic equation with coefficients from the $\beta $-uniform algebra $C_\beta(\Omega)$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2018
SP  - 161
EP  - 165
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a1/
LA  - en
ID  - UZERU_2018_52_3_a1
ER  - 
%0 Journal Article
%A A. G. Kamalian
%A M. I. Karakhanyan
%T On algebraic equation with coefficients from the $\beta $-uniform algebra $C_\beta(\Omega)$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2018
%P 161-165
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a1/
%G en
%F UZERU_2018_52_3_a1
A. G. Kamalian; M. I. Karakhanyan. On algebraic equation with coefficients from the $\beta $-uniform algebra $C_\beta(\Omega)$. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 3, pp. 161-165. http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a1/

[1] R. C. Cauntryman, “On the Characterization of Compact Hausdorff Space X for which C(X) is Algebraically Closed”, Pacif. J. Math., 20:3 (1967), 433—448 | DOI | MR

[2] E.A. Gorin, M.I. Karakhanyaned Compacts, “Some Characteristics Properties of the Algebra of All Continnous Functions on Locally Connect”, Izv. Acad. Nauk Arm. SSR. Ser. Math., 11:3 (1976), 237–255 | MR | Zbl

[3] E. A. Gorin, M. I. Karakhanyan, “Some Characteristics Properties of the Algebra of All Continnous Functions on Locally Connected Compacts”, Izv. Acad. Nauk Arm. SSR. Ser. Math., 11:3 (1976), 237—255 (in Russian) | MR | Zbl

[4] R. Gr. Buck, “Bounded Continuous Functions on a Locally Compact Space”, Michigan Math. J., 5:2 (1978), 95—104 | MR

[5] R. A. Giles, “Generalization of the Strict Topology”, Transaction of the American Math. Soc., 161:2 (1974), 467—474 | MR

[6] M. I. Karakhanyan, T. L. Khorkova, “On a Characteristic Property of the Algebra Cb (W)”, Sibirsk. Math. J., 50:1 (2009), 96—106 (in Russian) | DOI | MR | Zbl

[7] H. H. Shaefer, Topological Vector Space, Academic Press, N.-Y., 1966 | MR

[8] M. I. Karakhanyan, “On the First Cohomology Group for a b-Uniform Algebra with Coefficients”, Z. Armenian Math. Union, Annual Session 2015, Dedicated to 100 Anniversary of Haik Badalyan, Yer., 2015, 59—60 (in Russian)

[9] E. A. Gorin, V. Ja. Lin, “Algebraic Equations with Continuous Coefficients and Some Questions Related to the Algebraic Theory of Braid”, Math. Sborn (USSR), 78(120):4 (1969), 579–610 | MR | Zbl

[10] S. T. Hu, Homotopy Theory, Academic Press, N.-Y., 1959 | MR

[11] T. W. Gamelin, Uniform Algebras, Prenti Ce-Hall Inc., Englewood Cliffs., N.-Y., 1969 | MR | Zbl

[12] L. D. Fadeev, “Inverse Problems of Quantum Scattering Theory”, The Results of Science and Technology, Series of Modern Problems of Mathematics, 3 (1974), 93–180 | MR | Zbl

[13] V. A. Marchenko, Operators of Sturm-Liouville and Their Applications, Naukova Dumka, Kiev, 1977 | MR