About a class of three-dimensional submanifolds in affine space $A^6$
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 3, pp. 157-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

Three-dimensional submanifolds in affine space $A^6$ have been studied by the method of exterior forms. It is proved that the structure of total space induces a special type of affine connection on this submanifold. The structure equations of this submanifold have been found.
Keywords: affine connection, manifold, three-dimensional submanifold, linear differential forms, the method of exterior forms.
@article{UZERU_2018_52_3_a0,
     author = {O. Arabyan},
     title = {About a class of three-dimensional submanifolds in affine space $A^6$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {157--160},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a0/}
}
TY  - JOUR
AU  - O. Arabyan
TI  - About a class of three-dimensional submanifolds in affine space $A^6$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2018
SP  - 157
EP  - 160
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a0/
LA  - en
ID  - UZERU_2018_52_3_a0
ER  - 
%0 Journal Article
%A O. Arabyan
%T About a class of three-dimensional submanifolds in affine space $A^6$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2018
%P 157-160
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a0/
%G en
%F UZERU_2018_52_3_a0
O. Arabyan. About a class of three-dimensional submanifolds in affine space $A^6$. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 3, pp. 157-160. http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a0/

[1] A. P. Norden, Spaces of Affine Connection, Nauka, M., 1976 (in Russian) | MR

[2] P. A. Shirokov, A. P. Shirokov, Affine Differential Geometry of Submanifolds, GIFML, M., 1959, 320 pp. (in Russian) | MR

[3] W. Blaschke, Affine Differential Geometry, Berlin, 1923 | MR

[4] A. Chakmazyan, Normal Connection in the Geometry of Submanifolds, ASPU Press, Yer., 1990 (in Russian) | MR

[5] O. Arbyan, “About a Class of Three-Dimensional Submanifolds in Affine Space $A^6$”, AAPP. Physical, Mathematical and Natural Sciences, 95 (2017), 53–57 | MR

[6] E. Cartan, Spaces of Affine, Projective and Conform Connection, Kazan University Press, Kazan, 1982 (in Russian) | MR

[7] G. F. Laptev, “Fundamental Infinitesimal Structures of Higher Orders on a Smooth Manifold”, Tr. Geom. Sem., 1, 1966, 139–189 | MR | Zbl

[8] H. Whitney, Geometric Integration Theory, Princeton University Press, 1957 | MR | Zbl