Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2018_52_3_a0, author = {O. Arabyan}, title = {About a class of three-dimensional submanifolds in affine space $A^6$}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {157--160}, publisher = {mathdoc}, volume = {52}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a0/} }
TY - JOUR AU - O. Arabyan TI - About a class of three-dimensional submanifolds in affine space $A^6$ JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2018 SP - 157 EP - 160 VL - 52 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a0/ LA - en ID - UZERU_2018_52_3_a0 ER -
%0 Journal Article %A O. Arabyan %T About a class of three-dimensional submanifolds in affine space $A^6$ %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2018 %P 157-160 %V 52 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a0/ %G en %F UZERU_2018_52_3_a0
O. Arabyan. About a class of three-dimensional submanifolds in affine space $A^6$. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 3, pp. 157-160. http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a0/
[1] A. P. Norden, Spaces of Affine Connection, Nauka, M., 1976 (in Russian) | MR
[2] P. A. Shirokov, A. P. Shirokov, Affine Differential Geometry of Submanifolds, GIFML, M., 1959, 320 pp. (in Russian) | MR
[3] W. Blaschke, Affine Differential Geometry, Berlin, 1923 | MR
[4] A. Chakmazyan, Normal Connection in the Geometry of Submanifolds, ASPU Press, Yer., 1990 (in Russian) | MR
[5] O. Arbyan, “About a Class of Three-Dimensional Submanifolds in Affine Space $A^6$”, AAPP. Physical, Mathematical and Natural Sciences, 95 (2017), 53–57 | MR
[6] E. Cartan, Spaces of Affine, Projective and Conform Connection, Kazan University Press, Kazan, 1982 (in Russian) | MR
[7] G. F. Laptev, “Fundamental Infinitesimal Structures of Higher Orders on a Smooth Manifold”, Tr. Geom. Sem., 1, 1966, 139–189 | MR | Zbl
[8] H. Whitney, Geometric Integration Theory, Princeton University Press, 1957 | MR | Zbl