About a class of three-dimensional submanifolds in affine space $A^6$
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 3, pp. 157-160

Voir la notice de l'article provenant de la source Math-Net.Ru

Three-dimensional submanifolds in affine space $A^6$ have been studied by the method of exterior forms. It is proved that the structure of total space induces a special type of affine connection on this submanifold. The structure equations of this submanifold have been found.
Keywords: affine connection, manifold, three-dimensional submanifold, linear differential forms, the method of exterior forms.
@article{UZERU_2018_52_3_a0,
     author = {O. Arabyan},
     title = {About a class of three-dimensional submanifolds in affine space $A^6$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {157--160},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a0/}
}
TY  - JOUR
AU  - O. Arabyan
TI  - About a class of three-dimensional submanifolds in affine space $A^6$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2018
SP  - 157
EP  - 160
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a0/
LA  - en
ID  - UZERU_2018_52_3_a0
ER  - 
%0 Journal Article
%A O. Arabyan
%T About a class of three-dimensional submanifolds in affine space $A^6$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2018
%P 157-160
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a0/
%G en
%F UZERU_2018_52_3_a0
O. Arabyan. About a class of three-dimensional submanifolds in affine space $A^6$. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 3, pp. 157-160. http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a0/