About a class of three-dimensional submanifolds in affine space $A^6$
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 3, pp. 157-160
Voir la notice de l'article provenant de la source Math-Net.Ru
Three-dimensional submanifolds in affine space $A^6$ have been studied by the
method of exterior forms. It is proved that the structure of total space induces a
special type of affine connection on this submanifold. The structure equations
of this submanifold have been found.
Keywords:
affine connection, manifold, three-dimensional submanifold,
linear differential forms, the method of exterior forms.
@article{UZERU_2018_52_3_a0,
author = {O. Arabyan},
title = {About a class of three-dimensional submanifolds in affine space $A^6$},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {157--160},
publisher = {mathdoc},
volume = {52},
number = {3},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a0/}
}
TY - JOUR AU - O. Arabyan TI - About a class of three-dimensional submanifolds in affine space $A^6$ JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2018 SP - 157 EP - 160 VL - 52 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a0/ LA - en ID - UZERU_2018_52_3_a0 ER -
%0 Journal Article %A O. Arabyan %T About a class of three-dimensional submanifolds in affine space $A^6$ %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2018 %P 157-160 %V 52 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a0/ %G en %F UZERU_2018_52_3_a0
O. Arabyan. About a class of three-dimensional submanifolds in affine space $A^6$. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 3, pp. 157-160. http://geodesic.mathdoc.fr/item/UZERU_2018_52_3_a0/