On a question of A. Sozutov
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 2, pp. 88-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper an answer to a problem posed by A.I. Sozutov in the Kourovka Notebook is given. The solution is based on some modification of the method that was proposed for constructing a non-abelian analogue of the additive group of rational numbers, i.e. a group whose center is an infinite cyclic group
Keywords: central extension, periodic group, normal closure.
@article{UZERU_2018_52_2_a2,
     author = {N. E. Mirzakhanyan and H. V. Piliposyan},
     title = {On a question of {A.} {Sozutov}},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {88--92},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_2_a2/}
}
TY  - JOUR
AU  - N. E. Mirzakhanyan
AU  - H. V. Piliposyan
TI  - On a question of A. Sozutov
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2018
SP  - 88
EP  - 92
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2018_52_2_a2/
LA  - en
ID  - UZERU_2018_52_2_a2
ER  - 
%0 Journal Article
%A N. E. Mirzakhanyan
%A H. V. Piliposyan
%T On a question of A. Sozutov
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2018
%P 88-92
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2018_52_2_a2/
%G en
%F UZERU_2018_52_2_a2
N. E. Mirzakhanyan; H. V. Piliposyan. On a question of A. Sozutov. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 2, pp. 88-92. http://geodesic.mathdoc.fr/item/UZERU_2018_52_2_a2/

[1] Math. USSR-Izv., 5:3 (1971), 475–484 | DOI | MR | Zbl

[2] V. D. Mazurov, Yu. I. Merzlyakov, V. A. Churkin, The Kourovka Notebook. Unsolved Problems in Group Theory, ed. 8, Institute of Math., Novosibirsk, 2014 | MR | Zbl

[3] S. I. Adian The Burnside Problem and Identities in Groups: Results in Mathematics and Related Areas, Springer Verlag, Berlin-New York, 1979, 95 pp. | MR

[4] Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S209–S215 | DOI | MR | Zbl

[5] Sh. A. Stepanyan, “On automorphisms of the relatively free groups satisfying the identity $[x^n,~y] = 1$”, Proceedings of the YSU, Physics Mathematics, 51:2 (2017), 196–198 | MR | Zbl

[6] S. I. Adian, V. S. Atabekyan, “Central Extensions of Free Periodic Groups”, Emil Artin International Conference Dedicated to the 120th Anniversary of Emil Artin (Yer. 27.05–02.06), 2018