On a version of fixed point theorem
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 2, pp. 84-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present short note we prove a version of the classical fixed-point theorem, as well as present its application.
Keywords: Banach fixed-point.
@article{UZERU_2018_52_2_a1,
     author = {L. V. Mikayelyan},
     title = {On a version of fixed point theorem},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {84--87},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_2_a1/}
}
TY  - JOUR
AU  - L. V. Mikayelyan
TI  - On a version of fixed point theorem
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2018
SP  - 84
EP  - 87
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2018_52_2_a1/
LA  - en
ID  - UZERU_2018_52_2_a1
ER  - 
%0 Journal Article
%A L. V. Mikayelyan
%T On a version of fixed point theorem
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2018
%P 84-87
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2018_52_2_a1/
%G en
%F UZERU_2018_52_2_a1
L. V. Mikayelyan. On a version of fixed point theorem. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 2, pp. 84-87. http://geodesic.mathdoc.fr/item/UZERU_2018_52_2_a1/

[1] N. Dunford, J. Schwartz, Linear Operators, Wiley, NY, 1988 | MR

[2] A. Kolmogorov, S. Fomin, Elements of the theory of functions and of functional analysis, Nauka, M, 1968 (in Russian) | MR