On automorphisms and endomorphisms of $CC$ groups
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 1, pp. 60-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the question of describing the automorphisms of semigroups $\mathrm{End}(G)$ of groups $G$ having only cyclic centralizers $(CC)$ of nontrivial elements. In particular, we prove that each automorphism of the automorphism group $\mathrm{Aut}(G)$ of groups $G$ from this class is uniquely determined by its action on the elements from the subgroup of inner automorphisms $\mathrm{Inn}(G)$. Note that, for instance, absolutely free groups, free periodic groups of large enough odd periods, $n$-periodic and free products of $CC$ groups also are $CC$ groups.
@article{UZERU_2018_52_1_a9,
     author = {H. T. Aslanyan},
     title = {On automorphisms and endomorphisms of $CC$ groups},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {60--63},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a9/}
}
TY  - JOUR
AU  - H. T. Aslanyan
TI  - On automorphisms and endomorphisms of $CC$ groups
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2018
SP  - 60
EP  - 63
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a9/
LA  - en
ID  - UZERU_2018_52_1_a9
ER  - 
%0 Journal Article
%A H. T. Aslanyan
%T On automorphisms and endomorphisms of $CC$ groups
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2018
%P 60-63
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a9/
%G en
%F UZERU_2018_52_1_a9
H. T. Aslanyan. On automorphisms and endomorphisms of $CC$ groups. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 1, pp. 60-63. http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a9/

[1] S. I. Adian, “The Burnside Problem and Identities in Groups”, Ergebnisse der Mathematik und Ihrer Grenzgebiete, 95 (1979) | MR

[2] S. I. Adian, “Periodic Products of Groups”, Proc. Steklov Inst. Math., 142, 1979, 1–19 | MR

[3] S. I. Adian, V. S. Atabekyan, “Periodic Product of Groups”, Journal of Contemporary Mathematical Analysis, 52:3 (2017), 111–117 | MR

[4] S. I. Adian, “Infinite Irreducible Systems of Group Identities”, Math. USSR-Izv., 4:4 (1970), 721–739 | DOI | MR

[5] S. I. Adian, V. S. Atabekyan, “On Free Groups of Infinitely Based Varieties of S. I. Adian”, Izv. Mathematics, 81:5 (2017), 889–900 | DOI | MR

[6] E. Formanek, “A Question of B. Plotkin About the Semigroup of Endomorphisms of a Free Group”, Proc. Amer. Math. Soc., 130 (2002), 935–937 | DOI | MR

[7] V. S. Atabekyan, “The Automorphisms of Endomorphism Semigroups of Free Burnside Groups”, Int. J. Algebra Comput., 25 (2015), 669–674 | DOI | MR

[8] G. Mashevitzky, B. Schein, “Automorphisms of the Endomorphism Semigroup of a Free Monoid or a Free Semigroup.”, Proc. Amer. Math. Soc., 131:6 (2003), 1655–1660 | DOI | MR

[9] V. S. Atabekyan, H. T. Aslanyan, “The Automorphisms of Endomorphism Semigroups of Relatively Free Groups”, International Journal of Algebra and Computation, 2018 | DOI | MR

[10] V. S. Atabekyan, H. T. Aslanyan, H. A. Grigorian, A. E. Grigoryan, “Analogues of Nielsen’s and Magnus’s theorems for free Burnside groups of period $3$”, Proceedings of the YSU. Physical and Mathematical Scienes, 51:3 (2017), 217–223 | Zbl