On automorphisms and endomorphisms of $CC$ groups
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 1, pp. 60-63

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the question of describing the automorphisms of semigroups $\mathrm{End}(G)$ of groups $G$ having only cyclic centralizers $(CC)$ of nontrivial elements. In particular, we prove that each automorphism of the automorphism group $\mathrm{Aut}(G)$ of groups $G$ from this class is uniquely determined by its action on the elements from the subgroup of inner automorphisms $\mathrm{Inn}(G)$. Note that, for instance, absolutely free groups, free periodic groups of large enough odd periods, $n$-periodic and free products of $CC$ groups also are $CC$ groups.
@article{UZERU_2018_52_1_a9,
     author = {H. T. Aslanyan},
     title = {On automorphisms and endomorphisms of $CC$ groups},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {60--63},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a9/}
}
TY  - JOUR
AU  - H. T. Aslanyan
TI  - On automorphisms and endomorphisms of $CC$ groups
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2018
SP  - 60
EP  - 63
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a9/
LA  - en
ID  - UZERU_2018_52_1_a9
ER  - 
%0 Journal Article
%A H. T. Aslanyan
%T On automorphisms and endomorphisms of $CC$ groups
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2018
%P 60-63
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a9/
%G en
%F UZERU_2018_52_1_a9
H. T. Aslanyan. On automorphisms and endomorphisms of $CC$ groups. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 1, pp. 60-63. http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a9/