Localized bending vibrations of piezoceramic transverse polarized plate
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 1, pp. 27-33
Voir la notice de l'article provenant de la source Math-Net.Ru
Problem of the piezoceramic plate polarized along the normal of the middle plane of the plate is solved, based on the assumptions of the hypothesis of Kirchhoff, taking into account the components characterizing the electric field. The equations of planar and bending vibrations are obtained. Localized bending vibrations are considered, and the effect of the electric field on the frequency of localized vibrations is investigated.
Keywords:
Kirchhoff’s hypothesis, natural frequencies, piezocrystal.
@article{UZERU_2018_52_1_a4,
author = {M. V. Belubekyan and S. V. Sarkisyan and A. H. Papyan},
title = {Localized bending vibrations of piezoceramic transverse polarized plate},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {27--33},
publisher = {mathdoc},
volume = {52},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a4/}
}
TY - JOUR AU - M. V. Belubekyan AU - S. V. Sarkisyan AU - A. H. Papyan TI - Localized bending vibrations of piezoceramic transverse polarized plate JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2018 SP - 27 EP - 33 VL - 52 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a4/ LA - en ID - UZERU_2018_52_1_a4 ER -
%0 Journal Article %A M. V. Belubekyan %A S. V. Sarkisyan %A A. H. Papyan %T Localized bending vibrations of piezoceramic transverse polarized plate %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2018 %P 27-33 %V 52 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a4/ %G en %F UZERU_2018_52_1_a4
M. V. Belubekyan; S. V. Sarkisyan; A. H. Papyan. Localized bending vibrations of piezoceramic transverse polarized plate. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 1, pp. 27-33. http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a4/