On an integro-differential equation of pseudoparabolic-pseudohyperbolic type with degenerate kernels
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 1, pp. 19-26
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article the questions of solvability of boundary value problem for a homogeneous pseudoparabolic-pseudohyperbolic type integro-differential equation with degenerate kernels are considered. Is used the Fourier method based on separation of variables. The criterion of one-value solvability of the considering problem is installed. Under this criterion is proved the one-valued solvability of the problem.
Keywords:
integro-differential equation, mixed type equation, degenerate kernels, integral condition, one valued solvability.
@article{UZERU_2018_52_1_a3,
author = {T. K. Yuldashev},
title = {On an integro-differential equation of pseudoparabolic-pseudohyperbolic type with degenerate kernels},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {19--26},
publisher = {mathdoc},
volume = {52},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a3/}
}
TY - JOUR AU - T. K. Yuldashev TI - On an integro-differential equation of pseudoparabolic-pseudohyperbolic type with degenerate kernels JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2018 SP - 19 EP - 26 VL - 52 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a3/ LA - en ID - UZERU_2018_52_1_a3 ER -
%0 Journal Article %A T. K. Yuldashev %T On an integro-differential equation of pseudoparabolic-pseudohyperbolic type with degenerate kernels %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2018 %P 19-26 %V 52 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a3/ %G en %F UZERU_2018_52_1_a3
T. K. Yuldashev. On an integro-differential equation of pseudoparabolic-pseudohyperbolic type with degenerate kernels. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 1, pp. 19-26. http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a3/