On the minimal coset covering for a special subset in direct product of two finite fields
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 3, pp. 236-240
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we estimate the minimal number of systems of linear equations of $n+m$ variables over a finite field $F_q$ such that the union of all solutions of all the systems coincides exactly with all elements of $\overset{\ast}{\mathbb{F}_{q}^{n}} \times \overset{\ast}{\mathbb{F}_{q}^{m}}$
Keywords:
linear algebra, covering with cosets.
@article{UZERU_2017_51_3_a4,
author = {A. V. Minasyan},
title = {On the minimal coset covering for a special subset in direct product of two finite fields},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {236--240},
publisher = {mathdoc},
volume = {51},
number = {3},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a4/}
}
TY - JOUR AU - A. V. Minasyan TI - On the minimal coset covering for a special subset in direct product of two finite fields JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2017 SP - 236 EP - 240 VL - 51 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a4/ LA - en ID - UZERU_2017_51_3_a4 ER -
%0 Journal Article %A A. V. Minasyan %T On the minimal coset covering for a special subset in direct product of two finite fields %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2017 %P 236-240 %V 51 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a4/ %G en %F UZERU_2017_51_3_a4
A. V. Minasyan. On the minimal coset covering for a special subset in direct product of two finite fields. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 3, pp. 236-240. http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a4/