Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2017_51_3_a2, author = {K. H. Hovsepyan and A. V. Tsutsulyan}, title = {$K${-Groups} of some subalgebras of the {Toeplitz} algebra}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {224--230}, publisher = {mathdoc}, volume = {51}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a2/} }
TY - JOUR AU - K. H. Hovsepyan AU - A. V. Tsutsulyan TI - $K$-Groups of some subalgebras of the Toeplitz algebra JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2017 SP - 224 EP - 230 VL - 51 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a2/ LA - en ID - UZERU_2017_51_3_a2 ER -
%0 Journal Article %A K. H. Hovsepyan %A A. V. Tsutsulyan %T $K$-Groups of some subalgebras of the Toeplitz algebra %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2017 %P 224-230 %V 51 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a2/ %G en %F UZERU_2017_51_3_a2
K. H. Hovsepyan; A. V. Tsutsulyan. $K$-Groups of some subalgebras of the Toeplitz algebra. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 3, pp. 224-230. http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a2/
[1] B.A. Barnes, “Representation of the $l^1$-Algebra of an Inverse Semigroup”, Trans. of AMS, 218 (1976), 361–396 | MR | Zbl
[2] L.A. Coburn, “The $C^*$-Algebra Generated by an Isometry”, Bull. Amer. Math. Soc., 1967, no. 73, 722–726 | DOI | MR | Zbl
[3] R.G. Douglas, “On the $C^*$-Algebra of a One-Parameter Semigroup of Isometries”, Acta Math., 1972, no. 128, 143–152 | DOI | MR
[4] G.J. Murphy, “Ordered Groups and Toeplitz Algebras”, J. Operator Theory, 1987, no. 18, 303–326 | MR | Zbl
[5] M.A. Aukhadiev, V.H. Tepoyan, “Isometric Representations of Totally Ordered Semigroups”, Lobachevskii Journal of Mathematics, 33:3 (2012), 239–243 | DOI | MR | Zbl
[6] G.J. Murphy, $C^*$-Algebras and Operator Theory, Academic Press, Boston, 1990, 296 pp. | MR
[7] N.E. Wege-Olsen, $K$-Theory and $^*$-Algebra: A Friendly Approach., Oxford University Press, NY, 1993, 373 pp. | MR
[8] K.R. Davidson, $C^*$-Algebras by Example, v. 6, Fields Institute Monograph. AMS, 1996, 309 pp. | MR
[9] S.Y. Jang, “Uniqueness Property of $C^*$-Algebras Like the Toeplitz Algebras”, Trends Math., 2003, no. 6, 29–32
[10] S.A. Grigoryan, A.F. Salakhutdinov, “$C^*$-Algebras Generated by Cancellative Semigroups”, Siberian Mathematical Journal, 51:1 (2010), 12–19 | DOI | MR | Zbl
[11] K.H. Hovsepyan, “On $C^*$-Algebras Generated by Inverse Subsemigroups of the Bicyclic Semigroup”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 49:5 (2014), 67–75 | MR | Zbl
[12] E.V. Lipacheva, K.H. Hovsepyan, “The Structure of $C^*$-Subalgebras of the Toeplitz Algebra Fixed with Respect to a Finite Group of Automorphisms”, Russian Mathematics (Izvestiya Vuz. Matematika), 59:6 (2015), 10–17 | DOI | MR | Zbl
[13] K.H. Hovsepyan, E.V. Lipacheva, “The Structure of Invariant Ideals of Some Subalgebras of Toeplitz Algebra”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 50:2 (2015), 70–79 | MR | Zbl
[14] E.V. Lipacheva, K.H. Hovsepyan, “Automorphisms of Some Subalgebras of the Toeplitz Algebra”, Siberian Mathematical Journal, 57:3 (2016), 525–531 | DOI | MR | Zbl
[15] K. H. Hovsepyan, “The $C^*$-algebra $\mathfrak{T}_m$ as a crossed product”, Proceedings of the YSU, Physics Mathematics, 2014, no. 3, 24–30 | Zbl