$K$-Groups of some subalgebras of the Toeplitz algebra
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 3, pp. 224-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is discussed $K$-groups of $C^*$-subalgebras of the Toeplitz algebra generated by inverse subsemigroups of the bicyclic semigroup. For these algebras constructed inductive limit of inductive sequence of $K$-groups, which are generated by the corresponding inductive sequence of $C^*$-algebras.
@article{UZERU_2017_51_3_a2,
     author = {K. H. Hovsepyan and A. V. Tsutsulyan},
     title = {$K${-Groups} of some subalgebras of the {Toeplitz} algebra},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {224--230},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a2/}
}
TY  - JOUR
AU  - K. H. Hovsepyan
AU  - A. V. Tsutsulyan
TI  - $K$-Groups of some subalgebras of the Toeplitz algebra
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2017
SP  - 224
EP  - 230
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a2/
LA  - en
ID  - UZERU_2017_51_3_a2
ER  - 
%0 Journal Article
%A K. H. Hovsepyan
%A A. V. Tsutsulyan
%T $K$-Groups of some subalgebras of the Toeplitz algebra
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2017
%P 224-230
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a2/
%G en
%F UZERU_2017_51_3_a2
K. H. Hovsepyan; A. V. Tsutsulyan. $K$-Groups of some subalgebras of the Toeplitz algebra. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 3, pp. 224-230. http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a2/

[1] B.A. Barnes, “Representation of the $l^1$-Algebra of an Inverse Semigroup”, Trans. of AMS, 218 (1976), 361–396 | MR | Zbl

[2] L.A. Coburn, “The $C^*$-Algebra Generated by an Isometry”, Bull. Amer. Math. Soc., 1967, no. 73, 722–726 | DOI | MR | Zbl

[3] R.G. Douglas, “On the $C^*$-Algebra of a One-Parameter Semigroup of Isometries”, Acta Math., 1972, no. 128, 143–152 | DOI | MR

[4] G.J. Murphy, “Ordered Groups and Toeplitz Algebras”, J. Operator Theory, 1987, no. 18, 303–326 | MR | Zbl

[5] M.A. Aukhadiev, V.H. Tepoyan, “Isometric Representations of Totally Ordered Semigroups”, Lobachevskii Journal of Mathematics, 33:3 (2012), 239–243 | DOI | MR | Zbl

[6] G.J. Murphy, $C^*$-Algebras and Operator Theory, Academic Press, Boston, 1990, 296 pp. | MR

[7] N.E. Wege-Olsen, $K$-Theory and $^*$-Algebra: A Friendly Approach., Oxford University Press, NY, 1993, 373 pp. | MR

[8] K.R. Davidson, $C^*$-Algebras by Example, v. 6, Fields Institute Monograph. AMS, 1996, 309 pp. | MR

[9] S.Y. Jang, “Uniqueness Property of $C^*$-Algebras Like the Toeplitz Algebras”, Trends Math., 2003, no. 6, 29–32

[10] S.A. Grigoryan, A.F. Salakhutdinov, “$C^*$-Algebras Generated by Cancellative Semigroups”, Siberian Mathematical Journal, 51:1 (2010), 12–19 | DOI | MR | Zbl

[11] K.H. Hovsepyan, “On $C^*$-Algebras Generated by Inverse Subsemigroups of the Bicyclic Semigroup”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 49:5 (2014), 67–75 | MR | Zbl

[12] E.V. Lipacheva, K.H. Hovsepyan, “The Structure of $C^*$-Subalgebras of the Toeplitz Algebra Fixed with Respect to a Finite Group of Automorphisms”, Russian Mathematics (Izvestiya Vuz. Matematika), 59:6 (2015), 10–17 | DOI | MR | Zbl

[13] K.H. Hovsepyan, E.V. Lipacheva, “The Structure of Invariant Ideals of Some Subalgebras of Toeplitz Algebra”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 50:2 (2015), 70–79 | MR | Zbl

[14] E.V. Lipacheva, K.H. Hovsepyan, “Automorphisms of Some Subalgebras of the Toeplitz Algebra”, Siberian Mathematical Journal, 57:3 (2016), 525–531 | DOI | MR | Zbl

[15] K. H. Hovsepyan, “The $C^*$-algebra $\mathfrak{T}_m$ as a crossed product”, Proceedings of the YSU, Physics Mathematics, 2014, no. 3, 24–30 | Zbl