On automorphisms of the relatively free groups satisfying the identity $[x^n,~y] = 1$
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 2, pp. 196-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if an automorphism $\varphi$ of the relatively free group of the group variety, defined by the identity relation $[x^n,~y] = 1$, acts identically on its center, then $\varphi$ has either infinite or odd order, where $n\geq665$ is an arbitrary odd number.
Keywords: relatively free group, periodic group.
Mots-clés : automorphism
@article{UZERU_2017_51_2_a8,
     author = {Sh. A. Stepanyan},
     title = {On automorphisms of the relatively free groups satisfying the identity $[x^n,~y] = 1$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {196--198},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a8/}
}
TY  - JOUR
AU  - Sh. A. Stepanyan
TI  - On automorphisms of the relatively free groups satisfying the identity $[x^n,~y] = 1$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2017
SP  - 196
EP  - 198
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a8/
LA  - en
ID  - UZERU_2017_51_2_a8
ER  - 
%0 Journal Article
%A Sh. A. Stepanyan
%T On automorphisms of the relatively free groups satisfying the identity $[x^n,~y] = 1$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2017
%P 196-198
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a8/
%G en
%F UZERU_2017_51_2_a8
Sh. A. Stepanyan. On automorphisms of the relatively free groups satisfying the identity $[x^n,~y] = 1$. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 2, pp. 196-198. http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a8/

[1] S. I. Adian, The Burnside Problem and Identities in Groups, Ergebnisse der Mathematik und Ihrer Grenzgebiete, 95, Springer-Verlag, Berlin, 1979, 311 pp. | MR

[2] S. I. Adian, “New Estimates of Odd Exponents of Infinite Burnside Groups”, Proceedings of Steklov Inst. Math., 289, 2015, 33–71 | DOI | MR | Zbl

[3] A. E. Grigoryan, “Inner Automorphisms of Non-Commutative Analogues of the Additive Group of Rational Numbers”, Proceedings of the YSU. Physical and Mathematical Sciences, 2015, no. 1, 12–14 | Zbl

[4] S. I. Adian, V. S. Atabekyan, “Central Extensions of Free Burnside Groups by an Arbitrary Abelian Group”, Mat. Zametki (to appear)

[5] I. S. Ashmanov, A. Yu. Ol'shanskii, “Abelian and Central Extensions of Aspherical Groups”, Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 11, 48–60 (in Russian) | MR | Zbl

[6] A. Yu. Ol'shanskii, The Geometry of Defning Relations in Groups, Kluwer-Press, Amsterdam, 1991 | MR

[7] R. Baer, “Endlichkeitskriterien für Kommutatorgruppen”, Math. Aim., 124 (1952), 161–177 | MR | Zbl