On automorphisms of the relatively free groups satisfying the identity $[x^n,~y] = 1$
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 2, pp. 196-198
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that if an automorphism $\varphi$ of the relatively free group of the group variety, defined by the identity relation $[x^n,~y] = 1$, acts identically on its center, then $\varphi$ has either infinite or odd order, where $n\geq665$ is an arbitrary odd number.
Keywords:
relatively free group, periodic group.
Mots-clés : automorphism
Mots-clés : automorphism
@article{UZERU_2017_51_2_a8,
author = {Sh. A. Stepanyan},
title = {On automorphisms of the relatively free groups satisfying the identity $[x^n,~y] = 1$},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {196--198},
publisher = {mathdoc},
volume = {51},
number = {2},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a8/}
}
TY - JOUR AU - Sh. A. Stepanyan TI - On automorphisms of the relatively free groups satisfying the identity $[x^n,~y] = 1$ JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2017 SP - 196 EP - 198 VL - 51 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a8/ LA - en ID - UZERU_2017_51_2_a8 ER -
%0 Journal Article %A Sh. A. Stepanyan %T On automorphisms of the relatively free groups satisfying the identity $[x^n,~y] = 1$ %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2017 %P 196-198 %V 51 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a8/ %G en %F UZERU_2017_51_2_a8
Sh. A. Stepanyan. On automorphisms of the relatively free groups satisfying the identity $[x^n,~y] = 1$. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 2, pp. 196-198. http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a8/