On automorphisms of the relatively free groups satisfying the identity $[x^n,~y] = 1$
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 2, pp. 196-198

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if an automorphism $\varphi$ of the relatively free group of the group variety, defined by the identity relation $[x^n,~y] = 1$, acts identically on its center, then $\varphi$ has either infinite or odd order, where $n\geq665$ is an arbitrary odd number.
Keywords: relatively free group, periodic group.
Mots-clés : automorphism
@article{UZERU_2017_51_2_a8,
     author = {Sh. A. Stepanyan},
     title = {On automorphisms of the relatively free groups satisfying the identity $[x^n,~y] = 1$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {196--198},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a8/}
}
TY  - JOUR
AU  - Sh. A. Stepanyan
TI  - On automorphisms of the relatively free groups satisfying the identity $[x^n,~y] = 1$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2017
SP  - 196
EP  - 198
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a8/
LA  - en
ID  - UZERU_2017_51_2_a8
ER  - 
%0 Journal Article
%A Sh. A. Stepanyan
%T On automorphisms of the relatively free groups satisfying the identity $[x^n,~y] = 1$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2017
%P 196-198
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a8/
%G en
%F UZERU_2017_51_2_a8
Sh. A. Stepanyan. On automorphisms of the relatively free groups satisfying the identity $[x^n,~y] = 1$. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 2, pp. 196-198. http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a8/