Homogeneous ideals and Jacobson radical
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 2, pp. 193-195
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the Jacobson radical of an algebra $F\langle X\rangle/H$ is studied, where $F\langle X\rangle$ is a free associative algebra of countable rank over infinite field $F$ and $ H$ is a homogeneous ideal of the algebra $F\langle X\rangle$. The following theorem is proved: the Jacobson radical of an algebra $F\langle X\rangle$ is a nil ideal.
Keywords:
free algebra, Jacobson radical, $T$-ideal, homogeneous ideal, nil ideal.
@article{UZERU_2017_51_2_a7,
author = {N. G. Najaryan},
title = {Homogeneous ideals and {Jacobson} radical},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {193--195},
publisher = {mathdoc},
volume = {51},
number = {2},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a7/}
}
TY - JOUR AU - N. G. Najaryan TI - Homogeneous ideals and Jacobson radical JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2017 SP - 193 EP - 195 VL - 51 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a7/ LA - en ID - UZERU_2017_51_2_a7 ER -
N. G. Najaryan. Homogeneous ideals and Jacobson radical. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 2, pp. 193-195. http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a7/